44 research outputs found

    Predicting hospital cost in CKD patients through blood chemistry values

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Controversy exists in predicting costly hospitalization in patients with chronic kidney disease and co-morbid conditions. We therefore tested associations between serum chemistry values and the occurrence of in-patient hospital costs over a thirteen month study period. Secondarily, we derived a linear combination of variables to estimate probability of such occurrences in any patient.</p> <p>Method</p> <p>We calculated parsimonious values for select variables associated with in-patient hospitalization and compared sensitivity and specificity of these models to ordinal staging of renal disease.</p> <p>Data from 1104 de-identified patients which included 18 blood chemistry observations along with complete claims data for all medical expenses.</p> <p>We employed multivariable logistic regression for serum chemistry values significantly associated with in-patient hospital costs exceeding $3,000 in any single month and contrasted those results to other models by ROC area curves.</p> <p>Results</p> <p>The linear combination of weighted Z scores for parathyroid hormone, phosphorus, and albumin correlated with in-patient hospital care at p < 0.005. ROC curves derived from weighted variables of age, eGFR, hemoglobin, albumin, creatinine, and alanine aminotransferase demonstrated significance over models based on non-weighted Z scores for those same variables or CKD stage alone. In contrast, the linear combination of weighted PTH, PO4 and albumin demonstrated better prediction, but not significance over non-weighted Z scores for PTH alone.</p> <p>Conclusion</p> <p>Further study is justified to explore indices that predict costly hospitalization. Such metrics could assist Accountable Care Organizations in evaluating risk adjusted compensation for providers.</p

    Development of a real-time quantitative PCR assay for detection of a stable genomic region of BK virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BK virus infections can have clinically significant consequences in immunocompromised individuals. Detection and monitoring of active BK virus infections in certain situations is recommended and therefore PCR assays for detection of BK virus have been developed. The performance of current BK PCR detection assays is limited by the existence of viral polymorphisms, unknown at the time of assay development, resulting in inconsistent detection of BK virus. The objective of this study was to identify a stable region of the BK viral genome for detection by PCR that would be minimally affected by polymorphisms as more sequence data for BK virus becomes available.</p> <p>Results</p> <p>Employing a combination of techniques, including amino acid and DNA sequence alignment and interspecies analysis, a conserved, stable PCR target region of the BK viral genomic region was identified within the VP2 gene. A real-time quantitative PCR assay was then developed that is specific for BK virus, has an analytical sensitivity of 15 copies/reaction (450 copies/ml) and is highly reproducible (CV ≤ 5.0%).</p> <p>Conclusion</p> <p>Identifying stable PCR target regions when limited DNA sequence data is available may be possible by combining multiple analysis techniques to elucidate potential functional constraints on genomic regions. Applying this approach to the development of a real-time quantitative PCR assay for BK virus resulted in an accurate method with potential clinical applications and advantages over existing BK assays.</p

    Strict blood pressure control associates with decreased mortality risk by APOL1 genotype.

    Full text link
    Although APOL1 high-risk genotype partially accounts for the increased susceptibility of blacks to chronic kidney disease (CKD), whether APOL1 associates differentially with mortality risk remains controversial. Here we evaluate the association between APOL1 genotype and risk of death and determine whether APOL1 status modifies the association between strict versus usual blood pressure control and mortality risk. We performed a retrospective analysis of the African American Study of Kidney Disease and Hypertension trial that randomized black participants with CKD to strict versus usual blood pressure control from 1995 to 2001. This included 682 participants with known APOL1 genotype (157 with high-risk genotype) previously assigned to either strict (mean arterial pressure [MAP] 92 mm&nbsp;Hg or less) versus usual blood pressure control (MAP 102-107 mm&nbsp;Hg) during the trial. During a median follow-up of 14.5 years, risk of death did not differ between individuals with high- versus low-risk APOL1 genotypes (unadjusted hazard ratio 1.00 [95% confidence interval 0.76-1.33]). However, a significant interaction was detected between the APOL1 risk group and blood pressure control strategy. In the APOL1 high-risk group, the risk of death was 42% lower comparing strict versus usual blood pressure control (0.58 [0.35-0.97]). In the APOL1 low-risk group, the risk of death comparing strict versus usual blood pressure control was not significantly different (1.09 [0.84-1.43]). Thus, strict blood pressure control during CKD associates with a lower risk of death in blacks with the high-risk CKD APOL1 genotype. Knowledge of APOL1 status could inform selection of blood pressure treatment targets in black CKD patients
    corecore