137 research outputs found

    In Search of an Uncultured Human-Associated TM7 Bacterium in the Environment

    Get PDF
    We have identified an environmental bacterium in the Candidate Division TM7 with ≥98.5% 16S rDNA gene homology to a group of TM7 bacteria associated with the human oral cavity and skin. The environmental TM7 bacterium (referred to as TM7a-like) was readily detectable in wastewater with molecular techniques over two years of sampling. We present the first images of TM7a-like cells through FISH technique and the first images of any TM7 as viable cells through the STARFISH technique. In situ quantification showed TM7 concentration in wastewater up to five times greater than in human oral sites. We speculate that upon further characterization of the physiology and genetics of the TM7a-like bacterium from environmental sources and confirmation of its genomic identity to human-associated counterparts it will serve as model organisms to better understand its role in human health. The approach proposed circumvents difficulties imposed by sampling humans, provides an alternative strategy to characterizing some diseases of unknown etiology, and renders a much needed understanding of the ecophysiological role hundreds of unique Bacteria and Archaea strains play in mixed microbial communities

    Microglia and Microglia-Like Cell Differentiated from DC Inhibit CD4 T Cell Proliferation

    Get PDF
    The central nervous system (CNS) is generally regarded as a site of immune privilege, whether the antigen presenting cells (APCs) are involved in the immune homeostasis of the CNS is largely unknown. Microglia and DCs are major APCs in physiological and pathological conditions, respectively. In this work, primary microglia and microglia-like cells obtained by co-culturing mature dendritic cells with CNS endothelial cells in vitro were functional evaluated. We found that microglia not only cannot prime CD4 T cells but also inhibit mature DCs (maDCs) initiated CD4 T cells proliferation. More importantly, endothelia from the CNS can differentiate maDCs into microglia-like cells (MLCs), which possess similar phenotype and immune inhibitory function as microglia. Soluble factors including NO lie behind the suppression of CD4 T cell proliferation induced by both microglia and MLCs. All the data indicate that under physiological conditions, microglia play important roles in maintaining immune homeostasis of the CNS, whereas in a pathological situation, the infiltrated DCs can be educated by the local microenvironment and differentiate into MLCs with inhibitory function

    Effect of an EBM course in combination with case method learning sessions: an RCT on professional performance, job satisfaction, and self-efficacy of occupational physicians

    Get PDF
    Objective An intervention existing of an evidence-based medicine (EBM) course in combination with case method learning sessions (CMLSs) was designed to enhance the professional performance, self-efficacy and job satisfaction of occupational physicians. Methods A cluster randomized controlled trial was set up and data were collected through questionnaires at baseline (T0), directly after the intervention (T1) and 7 months after baseline (T2). The data of the intervention group [T0 (n = 49), T1 (n = 31), T2 (n = 29)] and control group [T0 (n = 49), T1 (n = 28), T2 (n = 28)] were analysed in mixed model analyses. Mean scores of the perceived value of the CMLS were calculated in the intervention group. Results The overall effect of the intervention over time comparing the intervention with the control group was statistically significant for professional performance (p <0.001). Job satisfaction and self-efficacy changes were small and not statistically significant between the groups. The perceived value of the CMLS to gain new insights and to improve the quality of their performance increased with the number of sessions followed. Conclusion An EBM course in combination with case method learning sessions is perceived as valuable and offers evidence to enhance the professional performance of occupational physicians. However, it does not seem to influence their self-efficacy and job satisfactio

    Information and feedback to improve occupational physicians’ reporting of occupational diseases: a randomised controlled trial

    Get PDF
    To assess the effectiveness of supplying occupational physicians (OPs) with targeted and stage-matched information or with feedback on reporting occupational diseases to the national registry in the Netherlands. In a randomized controlled design, 1076 OPs were divided into three groups based on previous reporting behaviour: precontemplators not considering reporting, contemplators considering reporting and actioners reporting occupational diseases. Precontemplators and contemplators were randomly assigned to receive stage-matched, stage-mismatched or general information. Actioners were randomly assigned to receive personalized or standardized feedback upon notification. Outcome measures were the number of OPs reporting and the number of reported occupational diseases in a 180-day period before and after the intervention. Precontemplators were significantly more male and self-employed compared to contemplators and actioners. There was no significant effect of stage-matched information versus stage-mismatched or general information on the percentage of reporting OPs and on the mean number of notifications in each group. Receiving any information affected reporting more in contemplators than in precontemplators. The mean number of notifications in actioners increased more after personalized feedback than after standardized feedback, but the difference was not significant. This study supports the concept that contemplators are more susceptible to receiving information but could not confirm an effect of stage-matching this information on reporting occupational diseases to the national registr

    The role of socio-economic status in the decision making on diagnosis and treatment of oesophageal cancer in The Netherlands

    Get PDF
    In the United States (USA), a correlation has been demonstrated between socio-economic status (SES) of patients on the one hand, and tumour histology, stage of the disease and treatment modality of various cancer types on the other hand. It is unknown whether such correlations are also involved in patients with oesophageal cancer in The Netherlands. Between 1994 and 2003, 888 oesophageal cancer patients were included in a prospective database with findings on the diagnostic work-up and treatment of oesophageal cancer. Socio-economic status of patients was defined as the average net yearly income. Linear-by-linear association testing revealed that oesophageal adenocarcinoma was more frequently observed in patients with higher SES and squamous cell carcinoma in patients with lower SES (P=0.02). Multivariable logistic regression analysis showed no correlation between SES and staging procedures and preoperative TNM stage. The adjusted odds ratio (OR) for stent placement was 0.82 (95% CI 0.71–0.95), indicating that with an increase in SES by 1200 €, the likelihood that a stent was placed declined by 18%. Patients with a higher SES more frequently underwent resection or were treated with chemotherapy (OR: 1.15; 95% CI 1.01–1.32 and OR: 1.16; 95% CI 1.02–1.32, respectively). Socio-economic factors are involved in oesophageal cancer in The Netherlands, as patients with a higher SES are more likely to have an adenocarcinoma and patients with a lower SES a squamous cell carcinoma. Moreover, the correlations between SES and different treatment modalities suggest that both patient and doctor determinants contribute to the decision on the most optimal treatment modality in patients with oesophageal cancer

    The Yeast Spore Wall Enables Spores to Survive Passage through the Digestive Tract of Drosophila

    Get PDF
    In nature, yeasts are subject to predation by flies of the genus Drosophila. In response to nutritional starvation Saccharomyces cerevisiae differentiates into a dormant cell type, termed a spore, which is resistant to many types of environmental stress. The stress resistance of the spore is due primarily to a spore wall that is more elaborate than the vegetative cell wall. We report here that S. cerevisiae spores survive passage through the gut of Drosophila melanogaster. Constituents of the spore wall that distinguish it from the vegetative cell wall are necessary for this resistance. Ascospores of the distantly related yeast Schizosaccharomyces pombe also display resistance to digestion by D. melanogaster. These results suggest that the primary function of the yeast ascospore is as a cell type specialized for dispersion by insect vectors

    Enzymatic hydrolysis of sorghum straw using native cellulase produced by T. reesei NCIM 992 under solid state fermentation using rice straw

    Get PDF
    Cellulose is a major constituent of renewable lignocellulosic waste available in large quantities and is considered the most important reservoir of carbon for the production of glucose, for alternative fuel and as a chemical feedstock. Over the past decade, the emphasis has been on the enzymatic hydrolysis of cellulose to glucose and the efficiency of which depends on source of cellulosic substrate, its composition, structure, pretreatment process, and reactor design. In the present study, efforts were made to produce cellulase enzyme using rice straw. The produced enzyme was used for the hydrolysis of selected lignocellulosic substrate, i.e., sorghum straw. When rice straw was used as a substrate for cellulase production under solid state fermentation, the highest enzyme activity obtained was 30.7 FPU/gds, using T. reesei NCIM 992. 25 FPU/g of cellulase was added to differently treated (native, alkali treated, alkali treated followed by 3% acid treated and alkali treated followed by 3 and 5% acid treated) sorghum straw and hydrolysis was carried out at 50 °C for 60 h. 42.5% hydrolysis was obtained after 36 h of incubation. Optimization of enzyme loading, substrate concentration, temperature, time and buffer yielded a maximum of 546.00 ± 0.55 mg/g sugars (54.60 ± 0.44 g/l) with an improved hydrolysis efficiency of 70 ± 0.45%. The enzymatic hydrolyzate can be used for fermentation of ethanol by yeasts

    Cardiac sodium channelopathies

    Get PDF
    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (INa) during phase 0 of the cardiac action potential. The importance of INa for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in SCN5A, the gene responsible for the pore-forming ion-conducting α-subunit, or in genes that encode the ancillary β-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which INa dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase INa delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce INa decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced INa dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies

    Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa

    Get PDF
    Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique immunological profiles of small isolated populations. Consequently, predicting the impact of introduced disease on the many other endemic faunas of the remote Pacific will remain a challenge

    Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis

    Full text link
    corecore