6,918 research outputs found
A new friction factor relationship for fully developed pipe flow
The friction factor relationship for high-Reynolds-number fully developed turbulent pipe flow is investigated using two sets of data from the Princeton Superpipe in the range 31×10^3 ≤ ReD ≤ 35×10^6. The constants of Prandtl’s ‘universal’ friction factor relationship are shown to be accurate over only a limited Reynolds-number range and unsuitable for extrapolation to high Reynolds numbers. New constants, based on a logarithmic overlap in the mean velocity, are found to represent the high-Reynolds-number data to within 0.5%, and yield a value for the von Kármán constant that is consistent with the mean velocity profiles themselves. The use of a generalized logarithmic law in the mean velocity is also examined. A general friction factor relationship is proposed that predicts all the data to within 1.4% and agrees with the Blasius relationship for low Reynolds numbers to within 2.0%
Study of the structure of turbulent shear flows at supersonic speeds and high Reynolds number
A major effort to improve the accuracies of turbulence measurement techniques is described including the development and testing of constant temperature hot-wire anemometers which automatically compensate for frequency responses. Calibration and data acquisition techniques for normal and inclined wires operated in the constant temperature mode, flow geometries, and physical models to explain the observed behavior of flows are discussed, as well as cooperation with computational groups in the calculation of compression corner flows
Longitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated diamond
We present systematic measurements of longitudinal relaxation rates ()
of spin polarization in the ground state of the nitrogen-vacancy (NV) color
center in synthetic diamond as a function of NV concentration and magnetic
field . NV centers were created by irradiating a Type 1b single-crystal
diamond along the [100] axis with 200 keV electrons from a transmission
electron microscope with varying doses to achieve spots of different NV
center concentrations. Values of () were measured for each spot as a
function of .Comment: 4 pages, 8 figure
Theoretical He I Emissivities in the Case B Approximation
We calculate the He I case B recombination cascade spectrum using improved
radiative and collisional data. We present new emissivities over a range of
electron temperatures and densities. The differences between our results and
the current standard are large enough to have a significant effect not only on
the interpretation of observed spectra of a wide variety of objects but also on
determinations of the primordial helium abundance.Comment: Accepted to ApJ
Friction factors for smooth pipe flow
Friction factor data from two recent pipe flow experiments are combined to provide a comprehensive picture of the friction factor variation for Reynolds numbers from 10 to 36,000,000
The Primordial Abundance of He4: An Update
We include new data in an updated analysis of helium in low metallicity
extragalactic HII regions with the goal of deriving the primordial abundance of
He4 (Y_P). We show that the new observations of Izotov et al (ITL) are
consistent with previous data. However they should not be taken in isolation to
determine (Y_P) due to the lack of sufficiently low metallicity points. We use
the extant data in a semi-empirical approach to bounding the size of possible
systematic uncertainties in the determination of (Y_P). Our best estimate for
the primordial abundance of He4 assuming a linear relation between He4 and O/H
is Y_P = 0.230 \pm 0.003 (stat) based on the subset of HII regions with the
lowest metallicity; for our full data set we find Y_P = 0.234 \pm 0.002 (stat).
Both values are entirely consistent with our previous results. We discuss the
implications of these values for standard big bang nucleosynthesis (SBBN),
particularly in the context of recent measurements of deuterium in high
redshift, low metallicity QSO absorption-line systems.Comment: 26 pages, latex, 6 ps figure
Understanding the effect of seams on the aerodynamics of an association football
The aerodynamic properties of an association football were measured using a wind tunnel arrangement. A third scale model of a generic football (with seams) was used in addition to a 'mini-football'. As the wind speed was increased, the drag coefficient decreased from 0.5 to 0.2, suggesting a transition from laminar to turbulent behaviour in the boundary layer. For spinning footballs, the Magnus effect was observed and it was found that reverse Magnus effects were possible at low Reynolds numbers. Measurements on spinning smooth spheres found that laminar behaviour led to a high drag coefficient for a large range of Reynolds numbers, and Magnus effects were inconsistent, but generally showed reverse Magnus behaviour at high Reynolds number and spin parameter. Trajectory simulations of free kicks demonstrated that a football that is struck in the centre will follow a near straight trajectory, dipping slightly before reaching the goal, whereas a football that is struck off centre will bend before reaching the goal, but will have a significantly longer flight time. The curving kick simulation was repeated for a smooth ball, which resulted in a longer flight time, due to increased drag, and the ball curving in the opposite direction, due to reverse Magnus effects. The presence of seams was found to encourage turbulent behaviour, resulting in reduced drag and more predictable Magnus behaviour for a conventional football, compared with a smooth ball. © IMechE 2005
Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues
Wall-bounded turbulent flows at high Reynolds numbers have become an increasingly active area of
research in recent years. Many challenges remain in theory, scaling, physical understanding,
experimental techniques, and numerical simulations. In this paper we distill the salient advances of
recent origin, particularly those that challenge textbook orthodoxy. Some of the outstanding
questions, such as the extent of the logarithmic overlap layer, the universality or otherwise of the
principal model parameters such as the von Kármán “constant,” the parametrization of roughness
effects, and the scaling of mean flow and Reynolds stresses, are highlighted. Research avenues that
may provide answers to these questions, notably the improvement of measuring techniques and the
construction of new facilities, are identified. We also highlight aspects where differences of opinion
persist, with the expectation that this discussion might mark the beginning of their resolution
On the origin of the extremely different solubilities of polyethers in water
The solubilities of polyethers are surprisingly counter-intuitive. The best-known example is the difference between polyethylene glycol ([–CH2–CH2–O–]n) which is infinitely soluble, and polyoxymethylene ([–CH2–O–]n) which is completely insoluble in water, exactly the opposite of what one expects from the C/O ratios of these molecules. Similar anomalies exist for oligomeric and cyclic polyethers. To solve this apparent mystery, we use femtosecond vibrational and GHz dielectric spectroscopy with complementary ab initio calculations and molecular dynamics simulations. We find that the dynamics of water molecules solvating polyethers is fundamentally different depending on their C/O composition. The ab initio calculations and simulations show that this is not because of steric effects (as is commonly believed), but because the partial charge on the O atoms depends on the number of C atoms by which they are separated. Our results thus show that inductive effects can have a major impact on aqueous solubilities
The optimal schedule for pulsar timing array observations
In order to maximize the sensitivity of pulsar timing arrays to a stochastic
gravitational wave background, we present computational techniques to optimize
observing schedules. The techniques are applicable to both single and
multi-telescope experiments. The observing schedule is optimized for each
telescope by adjusting the observing time allocated to each pulsar while
keeping the total amount of observing time constant. The optimized schedule
depends on the timing noise characteristics of each individual pulsar as well
as the performance of instrumentation. Several examples are given to illustrate
the effects of different types of noise. A method to select the most suitable
pulsars to be included in a pulsar timing array project is also presented.Comment: 16 pages, 6 figures, accepted by MNRA
- …