185 research outputs found

    A Simple Method for the Size Controlled Synthesis of Stable Oligomeric Clusters of Gold Nanoparticles under Ambient Conditions

    Get PDF
    Reducing dilute aqueous HAuCl4 with sodium thiocyanate (NaSCN) under alkaline conditions produces 2 to 3 nm diameter nanoparticles. Stable grape-like oligomeric clusters of these yellow nanoparticles of narrow size distribution are synthesized under ambient conditions via two methods. The delay-time method controls the number of subunits in the oligoclusters by varying the time between the addition of HAuCl4 to alkaline solution and the subsequent addition of reducing agent, NaSCN. The yellow oligoclusters produced range in size from ~3 to ~25 nm. This size range can be further extended by an add-on method utilizing hydroxylated gold chloride (Na+[Au(OH4-x)Clx]-) to auto-catalytically increase the number of subunits in the as-synthesized oligocluster nanoparticles, providing a total range of 3 nm to 70 nm. The crude oligocluster preparations display narrow size distributions and do not require further fractionation for most purposes. The oligoclusters formed can be concentrated >300 fold without aggregation and the crude reaction mixtures remain stable for weeks without further processing. Because these oligomeric clusters can be concentrated before derivatization they allow expensive derivatizing agents to be used economically. In addition, we present two models by which predictions of particle size can be made with great accuracy

    The kallikrein–kinin system in health and in diseases of the kidney

    Get PDF
    Since kallikrein was discovered as a vasodilatory substance in human urine, the kallikrein–kinin system (KKS) has been considered to play a physiological role in controlling blood pressure. Gene targeting experiments in mice in which the KKS has been inactivated to varying degrees have, however, questioned this role, because basal blood pressures are not altered. Rather, these experiments have shown that the KKS has a different and important role in preventing changes associated with normal senescence in mice, and in reducing the nephropathy and accelerated senescence-associated phenotypes induced in mice by diabetes. Other experiments have shown that the KKS suppresses mitochondrial respiration, partly by nitric oxide and prostaglandins, and that this suppression may be a key to understanding how the KKS influences senescence-related diseases. Here we review the logical progression and experimental data leading to these conclusions, and discuss their relevance to human conditions

    Transforming growth factor-β1 and diabetic nephropathy

    Get PDF
    Transforming growth factor-β1 (TGF-β1) is established to be involved in the pathogenesis of diabetic nephropathy. The diabetic milieu enhances oxidative stress and induces the expression of TGF-β1. TGF-β1 promotes cell hypertrophy and extracellular matrix accumulation in the mesangium, which decreases glomerular filtration rate and leads to chronic renal failure. Recently, TGF-β1 has been demonstrated to regulate urinary albumin excretion by both increasing glomerular permeability and decreasing reabsorption in the proximal tubules. TGF-β1 also increases urinary excretion of water, electrolytes and glucose by suppressing tubular reabsorption in both normal and diabetic conditions. Although TGF-β1 exerts hypertrophic and fibrogenic effects in diabetic nephropathy, whether suppression of the function of TGF-β1 can be an option to prevent or treat the complication is still controversial. This is partly because adrenal production of mineralocorticoids could be augmented by the suppression of TGF-β1. However, differentiating the molecular mechanisms for glomerulosclerosis from those for the suppression of the effects of mineralocorticoids by TGF-β1 may assist in developing novel therapeutic strategies for diabetic nephropathy. In this review, we discuss recent findings on the role of TGF-β1 in diabetic nephropathy

    Stable Oligomeric Clusters of Gold Nanoparticles: Preparation, Size Distribution, Derivatization, and Physical and Biological Properties

    Get PDF
    Reducing dilute aqueous HAuCl4 with NaSCN under alkaline conditions produces 2–3 nm diameter yellow nanoparticles without the addition of extraneous capping agents. We here describe two very simple methods for producing highly stable oligomeric grape-like clusters (oligoclusters) of these small nanoparticles. The oligoclusters have well-controlled diameters ranging from ∼5 to ∼30 nm, depending mainly on the number of subunits in the cluster. Our first [“delay-time”] method controls the size of the oligoclusters by varying from seconds to hours the delay time between making the HAuCl4 alkaline and adding the reducing agent, NaSCN. Our second [“add-on”] method controls size by using yellow nanoparticles as seeds onto which varying amounts of gold derived from “hydroxylated gold”, Na+[Au(OH4–x)Clx]−, are added-on catalytically in the presence of NaSCN. Possible reaction mechanisms and a simple kinetic model fitting the data are discussed. The crude oligocluster preparations have narrow size distributions, and for most purposes do not require fractionation. The oligoclusters do not aggregate after ∼300-fold centrifugal-filter concentration, and at this high concentration are easily derivatized with a variety of thiol-containing reagents. This allows rare or expensive derivatizing reagents to be used economically. Unlike conventional glutathione-capped nanoparticles of comparable gold content, large oligoclusters derivatized with glutathione do not aggregate at high concentrations in phosphate-buffered saline (PBS) or in the circulation when injected into mice. Mice receiving them intravenously show no visible signs of distress. Their sizes can be made small enough to allow their excretion in the urine or large enough to prevent them from crossing capillary basement membranes. They are directly visible in electron micrographs without enhancement, and can model the biological fate of protein-like macromolecules with controlled sizes and charges. The ease of derivatizing the oligoclusters makes them potentially useful for presenting pharmacological agents to different tissues while controlling escape of the reagents from the circulation

    The kallikrein–kinin system and oxidative stress

    Get PDF
    The Kallikrein-kinin system (KKS) constitutes a complex multi-enzyme cascade that produces several bioactive kinin peptides and their derivatives including bradykinin. In addition to the classical notion of the KKS as a potent vasodilator and a mediator of inflammatory responses, recent studies suggest a link between the KKS and oxidative stress. A number of established mouse model with altered levels of KKS components opened the way to evaluate precise functions of the KKS. Here we review recent findings on the role of the KKS in cardiovascular diseases and chronic kidney diseases, and discuss potential benefits of KKS activation in these diseases

    A tetraethylene glycol coat gives gold nanoparticles long in vivo half-lives with minimal increase in size

    Get PDF
    In this study, we describe the experiments determining whether coating gold nanoparticles with tetraethylene glycol (TEG) provides pharmacologically relevant advantages, such as increased serum half-life and resistance to protein adsorption. Monodisperse TEG-coated, NaBH4-reduced gold nanoparticles with a hydrodynamic size comparable to albumin were synthesized by reducing gold chloride with NaBH4 under alkaline conditions in the presence of TEG-SH. The particles were characterized by gel electrophoresis, column chromatography, and transmission electron microscopy. The nanoparticles were subsequently injected intravenously into mice, and their half-lives and final destinations were determined via photometric analysis, light microscopy (LM), and transmission electron microscopy. The TEG particles had a long half-life (~400 minutes) that was not influenced by splenectomy. After 500 minutes of injection, TEG particles were found in kidney proximal tubule cell vesicles and in spleen red and white pulp. The particles induced apoptosis in the spleen red pulp but not in white pulp or the kidney. Some of the TEG particles appeared to have undergone ligand exchange reactions that increased their charge. The TEG particles were shown to be resistant to nonspecific protein adsorption, as judged by gel electrophoresis and column chromatography. These results demonstrate that naturally monodisperse, small-sized gold nanoparticles coated with TEG have long in vivo plasma half-lives, are minimally toxic, and are resistant to protein adsorption. This suggests that a TEG coating should be considered as an alternative to a polyethylene glycol coating, which is polydisperse and of much larger size

    Lethal thalassemia after insertional disruption of the mouse major adult beta-globin gene.

    Get PDF
    Thalassemias are hereditary anemias caused by mutations that disturb the normal 1:1 balance of a- and β-globin chains that form hemoglobin. We have disrupted the major adult β-globin gene (b1) in mouse embryonic stem cells by using homologous recombination to insert selectable sequences into the gene. Mice homozygous for this insertional disruption of the b1 gene (Hbbth-1/Hbbth-2) are severely anemic and die perinatally. In contrast, ≃60% of mice homozygous for deletion of the same gene (Hbbth-1/Hbbth-1) survive to adulthood and are much less anemic [Skow, L. C., Burkhart, B. A., Johnson, F. M., Popp, R. A., Goldberg, S. Z., Anderson, W. F., Barnett, L. B. & Lewis, S. E. (1983) Cell 34, 1043-1052].Thalassemias are hereditary anemias caused by mutations that disturb the normal 1:1 balance of a- and β-globin chains that form hemoglobin. We have disrupted the major adult β-globin gene (b1) in mouse embryonic stem cells by using homologous recombination to insert selectable sequences into the gene. Mice homozygous for this insertional disruption of the b1 gene (Hbbth-1/Hbbth-2) are severely anemic and die perinatally. In contrast, ≃60% of mice homozygous for deletion of the same gene (Hbbth-1/Hbbth-1) survive to adulthood and are much less anemic [Skow, L. C., Burkhart, B. A., Johnson, F. M., Popp, R. A., Goldberg, S. Z., Anderson, W. F., Barnett, L. B. & Lewis, S. E. (1983) Cell 34, 1043-1052]

    Prolactin alters blood pressure by modulating the activity of endothelial nitric oxide synthase

    Get PDF
    Prolactin is a hormone secreted by the pituitary gland that controls changes in the breast to enable milk production after the baby is born. In some mothers with pregnancy-related high blood pressure (BP), the concentration of prolactin in the blood is higher than normal, but whether this causes the high BP or is a consequence of it is uncertain. To answer this question, we have generated experimental mice that produce prolactin in the liver when we feed them a substance, indole-3-carbinol (IC3), that is found in broccoli. When fed normal chow, the mice are well, but, when fed IC3, they develop high BP and heart problems. This suggests that pregnant women with abnormally high prolactin levels may need special attention

    Postnatal development and progression of renal dysplasia in cyclooxygenase-2 null mice

    Get PDF
    BACKGROUND: Genetic ablation of cyclooxygenase-2 (COX-2) resulted in cystic renal dysplasia and early death in adult mice. The ontologic development of the renal pathology and the biochemical and physiological abnormalities associated with the dysplasia are unknown. METHODS: Mice homozygous for a targeted deletion of COX-2 (-/-) were compared with wild-type littermates (+/+). Somatic and kidney growth and renal histology were studied at the day of birth and at a number of postnatal ages. Systolic blood pressure, urinalysis, urine osmolality, serum and urine chemistries, and inulin clearance were evaluated in adult animals. RESULTS: Beginning at postnatal day 10 (PN10), kidney growth was suppressed in -/- animals, while somatic growth and heart growth were unaffected. By PN10, -/- kidneys had thin nephrogenic cortexes and crowded, small, subcapsular glomeruli. The pathology increased with age with progressive outer cortical dysplasia, cystic subcapsular glomeruli, loss of proximal tubular mass, and tubular atrophy and cyst formation. Adult -/- kidneys had profound diffuse tubular cyst formation, outer cortical glomerular hypoplasia and periglomerular fibrosis, inner cortical nephron hypertrophy, and diffuse interstitial fibrosis. The glomerular filtration rate was reduced by more than 50% in -/- animals (6.82 +/- 0.65 mL/min/kg) compared with wild-type controls (14.7 +/- 1.01 mL/min/kg, P < 0. 001). Plasma blood urea nitrogen and creatinine were elevated in null animals compared with controls. Blood pressure, urinalysis, urine osmolality, and other plasma chemistries were unaffected by the deletion of COX-2. CONCLUSIONS: Deficiency of COX-2 results in progressive and specific renal architectural disruption and functional deterioration beginning in the final phases of nephrogenesis. Tissue-specific and time-dependent expression of COX-2 appears necessary for normal postnatal renal development and the maintenance of normal renal architecture and function
    • …
    corecore