12 research outputs found

    Characterization and expression analysis of the groESL operon of Bartonella bacilliformis

    Get PDF
    The groESL operon of Bartonella bacilliformis, a facultative intracellular, Gram-negative bacterium and etiologic agent of Oroya Fever, was characterized. Sequence analysis revealed an operon containing two genes of 294 (groES) and 1632 nucleotides (groEL) separated by a 55-nt intergenic spacer. The operon is preceded by a 72-nt ORF (ORF1) that encodes a hypothetical protein with homology to a portion of the HrcA repressor for groESL. A divergent fumarate hydratase C (fumC) gene lies further upstream. Deduced amino acid sequences for B. bacilliformis GroEL and GroES revealed a high degree of identity with homologues from other Bartonella and alpha-Protebacteria. A single transcriptional start site (TSS) was mapped 79 nucleotides upstream of the groES start codon, regardless of incubation temperature. The TSS was located immediately 5\u27 to a potential controlling inverted repeat of chaperonin expression (CIRCE) element and is preceded by a sigma70-like promoter. The operon is followed by a predicted rho-independent transcriptional terminator. Northern blot analysis indicated that groES and groEL are co-transcribed as a single mRNA of approximately 2.4 kb. A 6-h time course analysis by qRT-PCR showed that groEL expression increases 1.3-fold within 30 min of a temperature upshift from 30 to 37 degrees C, with maximum transcription reached after 60 min (approximately 4.3-fold), followed by a steady decrease to background (30 degrees C) transcription levels by 6 h. Western blot analysis revealed a 1.4- and 1.5-fold increase in GroEL synthesis following a temperature upshift or by inhibiting DNA supercoiling with coumermycin A1, respectively. Functional expression and complementation of temperature-sensitive Escherichia coli groES or groEL mutants with the cloned operon allowed them to grow at otherwise restrictive temperatures

    Mitogenic Effect of Bartonella bacilliformis on Human Vascular Endothelial Cells and Involvement of GroEL

    Get PDF
    Bartonellae are bacterial pathogens for a wide variety of mammals. In humans, bartonellosis can result in angioproliferative lesions that are potentially life threatening to the patient, including bacillary angiomatosis, bacillary peliosis, and verruga peruana. The results of this study show that Bartonella bacilliformis, the agent of Oroya fever and verruga peruana, produces a proteinaceous mitogen for human vascular endothelial cells (HUVECs) that acts in a dose-dependent fashion in vitro with maximal activity at ≥72 h of exposure and results in a 6- to 20-fold increase in cell numbers relative to controls. The mitogen increases bromodeoxyuridine (BrdU) incorporation into HUVECs by almost twofold relative to controls. The mitogen is sensitive to heat and trypsin but is not affected by the lipopolysaccharide inhibitor polymyxin B. The mitogen does not affect caspase 3 activity in HUVECs undergoing serum starvation-induced apoptosis. The Bartonella mitogen was found in bacterial culture supernatants, the soluble cell lysate fraction, and, to a lesser degree, in insoluble cell fractions of the bacterium. In contrast, soluble cell lysate fractions from closely related B. henselae, although possessing significant mitogenicity for HUVECs, resulted in only about a twofold increase in cell numbers. Biochemical and immunological analyses identified GroEL as a participant in the observed HUVEC mitogenicity. A B. bacilliformis strain containing the intact groES-groEL operon on a multicopy plasmid was generated and used to demonstrate a correlation between HUVEC mitogenicity and GroEL levels in the lysate (r(2) = 0.85). Antiserum to GroEL significantly inhibited mitogenicity of the lysate. Data also show that GroEL is located in the soluble and insoluble fractions (including inner and outer membranes) of the cell and is actively secreted by B. bacilliformis

    Mutations in Bartonella bacilliformis gyrB Confer Resistance to Coumermycin A(1)

    Get PDF
    This study describes the first isolation and characterization of spontaneous mutants conferring natural resistance to an antibiotic for any Bartonella species. The Bartonella bacilliformis gyrB gene, which encodes the B subunit of DNA gyrase, was cloned and sequenced. The gyrB open reading frame (ORF) is 2,079 bp and encodes a deduced amino acid sequence of 692 residues, corresponding to a predicted protein of ∼77.5 kDa. Sequence alignment indicates that B. bacilliformis GyrB is most similar to the GyrB protein from Bacillus subtilis (40.1% amino acid sequence identity) and that it contains the longest N-terminal tail (52 residues) of any GyrB characterized to date. The cloned B. bacilliformis gyrB was expressed in an Escherichia coli S30 cell extract and was able to functionally complement a temperature-sensitive E. coli Cou(r) gyrB mutant (strain N4177). We isolated and characterized spontaneous mutants of B. bacilliformis resistant to coumermycin A(1), an antibiotic that targets GyrB. Sequence analysis of gyrB from 12 Cou(r) mutants of B. bacilliformis identified single nucleotide transitions at three separate loci in the ORF. The predicted amino acid substitutions resulting from these transitions are Gly to Ser at position 124 (Gly124→Ser), Arg184→Gln, and Thr214→Ala or Thr214→Ile, which are analogous to mutated residues found in previously characterized resistant gyrB genes from Borrelia burgdorferi, E. coli, Staphylococcus aureus, and Haloferax sp. The Cou(r) mutants are three to five times more resistant to coumermycin A(1) than the wild-type parental strain

    Hemin-Binding Surface Protein from Bartonella quintana

    Get PDF
    Bartonella quintana, the agent of trench fever and a cause of endocarditis and bacillary angiomatosis in humans, has the highest reported in vitro hemin requirement for any bacterium. We determined that eight membrane-associated proteins from B. quintana bind hemin and that a ∼25-kDa protein (HbpA) was the dominant hemin-binding protein. Like many outer membrane proteins, HbpA partitions to the detergent phase of a Triton X-114 extract of the cell and is heat modifiable, displaying an apparent molecular mass shift from approximately 25 to 30 kDa when solubilized at 100°C. Immunoblots of purified outer and inner membranes and immunoelectron microscopy with whole cells show that HbpA is strictly located in the outer membrane and surface exposed, respectively. The N-terminal sequence of mature HbpA was determined and used to clone the HbpA-encoding gene (hbpA) from a lambda genomic library. The hbpA gene is 816 bp in length, encoding a predicted immature protein of approximately 29.3 kDa and a mature protein of 27.1 kDa. A Fur box homolog with 53% identity to the Escherichia coli Fur consensus is located upstream of hbpA and may be involved in regulating expression. BLAST searches indicate that the closest homologs to HbpA include the Bartonella henselae phage-associated membrane protein, Pap31 (58.4% identity), and the OMP31 porin from Brucella melitensis (31.7% identity). High-stringency Southern blots indicate that all five pathogenic Bartonella spp. possess hbpA homologs. Recombinant HbpA can bind hemin in vitro; however, it does not confer a hemin-binding phenotype upon E. coli. Intact B. quintana treated with purified anti-HbpA Fab fragments show a significant (P < 0.004) dose-dependent decrease in hemin binding relative to controls, suggesting that HbpA plays an active role in hemin acquisition and therefore pathogenesis. HbpA is the first potential virulence determinant characterized from B. quintana

    gyrA Mutations in Ciprofloxacin-Resistant Bartonella bacilliformis Strains Obtained In Vitro

    Get PDF
    We isolated and characterized mutants of Bartonella bacilliformis that are resistant to the fluoroquinolone antibiotic ciprofloxacin, which targets the A subunit of DNA gyrase. Mutants had single point mutations in the gyrA gene that changed either Asp-90 to Gly or Asp-95 to Asn and had 3- or 16-fold higher resistance, respectively, to ciprofloxacin than did wild-type B. bacilliformis. Asp-95 is homologous to Asp-87 of Escherichia coli GyrA and is a common residue mutated in fluoroquinolone-resistant strains of other bacteria. This is the first report of a mutation at an Asp-90 homologue, which corresponds to Asp-82 in E. coli GyrA

    Environmental Signals Generate a Differential and Coordinated Expression of the Heme Receptor Gene Family of Bartonella quintana

    Get PDF
    Of all bacteria, Bartonella quintana has the highest reported in vitro hemin requirement, yet an explanation for this remains elusive. To produce diseases such as trench fever, endocarditis, and bacillary angiomatosis, B. quintana must survive and replicate in the disparate environments of the Pediculus humanus corporis (body louse) gut and the human vasculature. We previously identified a five-member family of hemin binding proteins (Hbps) synthesized by B. quintana that bind hemin on the outer surface but share no similarity to known bacterial heme receptors. In the present study, we examine the transcription, regulation, and synthesis of this virulence factor family by cultivation of the bacterium in environments that simulate natural heme, oxygen, and temperature conditions encountered in the host and insect vector. First, quantitative real-time PCR data show that hbpC expression is regulated by temperature, where a >100-fold increase in transcript quantity was seen at 30°C relative to 37°C, suggesting that HbpC synthesis would be greatest in the cooler temperature of the louse. Second, cultivation at human bloodstream oxygen concentration (5% relative to 21% atmospheric) significantly decreases the transcript quantity of all hbp genes, indicating that expression is influenced by O(2) and/or reactive oxygen species. Third, a differential expression pattern within the hbp family is revealed when B. quintana is grown in a range of hemin concentrations: subgroup I (hbpC and hbpB) predominates in a simulated louse environment (high heme), and subgroup II (hbpA, hbpD, and hbpE) is preferentially expressed in a simulated human background (low heme). By using two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and matrix-assisted laser desorption ionization—time of flight mass spectrometry fingerprinting, we demonstrate that synthesis of HbpA correlates with hbpA transcript increases observed at low hemin concentrations. Finally, an hbpA promoter-lacZ reporter construct in B. quintana demonstrates that a transcriptional regulator(s) is controlling the expression of hbpA through a cis-acting regulatory element located in the hbpA promoter region

    Transcriptional Regulation of the Heme Binding Protein Gene Family of Bartonella quintana Is Accomplished by a Novel Promoter Element and Iron Response Regulator▿ †

    Get PDF
    We previously identified a five-member family of hemin-binding proteins (Hbp's) of Bartonella quintana that bind hemin on the outer surface but share no homology with known bacterial heme receptors. Subsequently, we demonstrated that expression of the hbp family is significantly influenced by oxygen, heme, and temperature conditions encountered by the pathogen in the human host and the body louse vector; e.g., we observed a dramatic (>100-fold) increase in hbpC transcript levels in response to the “louse-like” temperature of 30°C. The goal of the present study was to identify a transcription factor(s) involved in the coordinated and differential regulation of the hbp family. First, we used quantitative real-time PCR (qRT-PCR) to show that the same environmental conditions generate parallels in the transcript profiles of four candidate transcriptional regulators (Irr, Fur, RirA, and BatR) described in the order Rhizobiales, with the greatest overall change in the transcription of irr (a >5-fold decrease) at a “louse-like” temperature, suggesting that Irr may function as an hbpC repressor. Second, a B. quintana strain hyperexpressing Irr was constructed; it exhibits a “bloodstream-like” hbp transcript profile in the absence of an environmental stimulus (i.e., hbpC is repressed and hbpA, hbpD, and hbpE mRNAs are relatively abundant). Furthermore, when this strain is grown at a “louse-like” temperature, an inversion of the transcript profile occurs, where derepression of hbpC and repression of hbpA, hbpD, and hbpE are readily evident, strongly suggesting that Irr and temperature influence hbp family expression. Third, electrophoretic mobility shift analyses show that recombinant Irr binds specifically to the hbpC promoter region at a sequence that is highly conserved in Bartonella hbp genes, which we designated the hbp family box, or “H-box.” Fourth, we used the H-box to search the B. quintana genome and discovered a number of intriguing open reading frames, e.g., five members of a six-member family of cohemolysin autotransporters. Finally, qRT-PCR data regarding the effects of Fur and RirA overexpression on the hbp family are provided; they show that Fur's effect on the hbp family is relatively minor but RirA generates a “bloodstream-like” hbp transcript profile in the absence of an environmental stimulus, as observed for the Irr-hyperexpressing strain

    Five-Member Gene Family of Bartonella quintana

    Get PDF
    Bartonella quintana, the agent of trench fever and an etiologic agent of bacillary angiomatosis, has an extraordinarily high hemin requirement for growth compared to other bacterial pathogens. We previously identified the major hemin receptor of the pathogen as a 30-kDa surface protein, termed HbpA. This report describes four additional homologues that share approximately 48% amino acid sequence identity with hbpA. Three of the genes form a paralagous cluster, termed hbpCAB, whereas the other members, hbpD and hbpE, are unlinked. Secondary structure predictions and other evidence suggest that Hbp family members are β-barrels located in the outer membrane and contain eight transmembrane domains plus four extracellular loops. Homologs from a variety of gram-negative pathogens were identified, including Bartonella henselae Pap31, Brucella Omp31, Agrobacterium tumefaciens Omp25, and neisserial opacity proteins (Opa). Family members expressed in vitro-synthesized proteins ranging from ca. 26.5 to 35.1 kDa, with the exception of HbpB, an ∼55.9-kDa protein whose respective gene has been disrupted by a ∼510 GC-rich element containing variable-number tandem repeats. Transcription analysis by quantitative reverse transcriptase-PCR (RT-PCR) indicates that all family members are expressed under normal culture conditions, with hbpD and hbpB transcripts being the most abundant and the rarest, respectively. Mutagenesis of hbpA by allelic exchange produced a strain that exhibited an enhanced hemin-binding phenotype relative to the parental strain, and analysis by quantitative RT-PCR showed elevated transcript levels for the other hbp family members, suggesting that compensatory expression occurs
    corecore