32,949 research outputs found

    SOME REGIONAL COOPERATIVE DILEMMAS

    Get PDF
    Agribusiness,

    A general model of the public goods dilemma

    Full text link
    An individually costly act that benefits all group members is a public good. Natural selection favors individual contribution to public goods only when some benefit to the individual offsets the cost of contribution. Problems of sex ratio, parasite virulence, microbial metabolism, punishment of noncooperators, and nearly all aspects of sociality have been analyzed as public goods shaped by kin and group selection. Here, I develop two general aspects of the public goods problem that have received relatively little attention. First, variation in individual resources favors selfish individuals to vary their allocation to public goods. Those individuals better endowed contribute their excess resources to public benefit, whereas those individuals with fewer resources contribute less to the public good. Thus, purely selfish behavior causes individuals to stratify into upper classes that contribute greatly to public benefit and social cohesion and to lower classes that contribute little to the public good. Second, if group success absolutely requires production of the public good, then the pressure favoring production is relatively high. By contrast, if group success depends weakly on the public good, then the pressure favoring production is relatively weak. Stated in this way, it is obvious that the role of baseline success is important. However, discussions of public goods problems sometimes fail to emphasize this point sufficiently. The models here suggest simple tests for the roles of resource variation and baseline success. Given the widespread importance of public goods, better models and tests would greatly deepen our understanding of many processes in biology and sociality

    Body-rock or lift-off in flow

    Full text link
    Conditions are investigated under which a body lying at rest or rocking on a solid horizontal surface can be removed from the surface by hydrodynamic forces or instead continues rocking. The investigation is motivated by recent observations on Martian dust movement as well as other small- and large-scale applications. The nonlinear theory of fluid-body interaction here has unsteady motion of an inviscid fluid interacting with a moving thin body. Various shapes of body are addressed together with a range of initial conditions. The relevant parameter space is found to be subtle as evolution and shape play substantial roles coupled with scaled mass and gravity effects. Lift-off of the body from the surface generally cannot occur without fluid flow but it can occur either immediately or within a finite time once the fluid flow starts up: parameters for this are found and comparisons are made with Martian observations.Comment: 28 pages, 9 figure
    corecore