96,169 research outputs found
A reference atmosphere for patrick afb, florida, annual /1963 revision/
Reference atmosphere for cape kennedy based on statistical parameters of pressure-height, temperature, and relative humidity at constant pressure level
Sensitivity analysis of the space shuttle to ascent wind profiles
A parametric sensitivity analysis of the space shuttle ascent flight to the wind profile is presented. Engineering systems parameters are obtained by flight simulations using wind profile models and samples of detailed (Jimsphere) wind profile measurements. The wind models used are the synthetic vector wind model, with and without the design gust, and a model of the vector wind change with respect to time. From these comparison analyses an insight is gained on the contribution of winds to ascent subsystems flight parameters
Some properties of a 5-parameter bivariate probability distribution
A five-parameter bivariate gamma distribution having two shape parameters, two location parameters and a correlation parameter was developed. This more general bivariate gamma distribution reduces to the known four-parameter distribution. The five-parameter distribution gives a better fit to the gust data. The statistical properties of this general bivariate gamma distribution and a hypothesis test were investigated. Although these developments have come too late in the Shuttle program to be used directly as design criteria for ascent wind gust loads, the new wind gust model has helped to explain the wind profile conditions which cause large dynamic loads. Other potential applications of the newly developed five-parameter bivariate gamma distribution are in the areas of reliability theory, signal noise, and vibration mechanics
A Revised Geometry for the Magnetic Wind of theta^1 Orionis C
Theta^1 Ori is thought to be a hot analog of Bp variables because its optical
and UV line and X-ray continuum fluxes modulate regularly over the
magnetic/rotational period. A flattened magnetosphere surrounding co-rotates
with these stars, producing a periodic modulation of emission and absorption
components of the UV resonance lines, as well as of optical H and He lines. In
this paper we examine these modulations in detail and point out that the
far-blue and near-red wings of C IV and N V resonance lines exhibit
anticorrelated modulations, causing mild flux elevations at moderate redshifts
at edge-on phase (phi=0.5). However, the lines do not exhibit rest-frame
absorption features, the usual signatures of cool static disks surrounding Bp
stars. We suggest that this behavior can be explained by the existence of two
geometrically distinct wind regions separated by the local magnetic Alfven
radius. Wind streams emerging outside this point are forced outward by
radiative forces and eventually expand outward radially to infinity - this
matter produces the far-blue wing absorptions at phi=0.5. Interior streams
follow closed loops and collide at the magnetic equator with counterstreams.
There they coalesce and fall back to the star along their original field lines
- these are responsible for mild emissions at this same phase. The rapid
circulation of the interior wind component back to the star is responsible for
the absence of static disk features.Comment: 7 figure
Local density of states of electron-crystal phases in graphene in the quantum Hall regime
We calculate, within a self-consistent Hartree-Fock approximation, the local
density of states for different electron crystals in graphene subject to a
strong magnetic field. We investigate both the Wigner crystal and bubble
crystals with M_e electrons per lattice site. The total density of states
consists of several pronounced peaks, the number of which in the negative
energy range coincides with the number of electrons M_e per lattice site, as
for the case of electron-solid phases in the conventional two-dimensional
electron gas. Analyzing the local density of states at the peak energies, we
find particular scaling properties of the density patterns if one fixes the
ratio nu_N/M_e between the filling factor nu_N of the last partially filled
Landau level and the number of electrons per bubble. Although the total density
profile depends explicitly on M_e, the local density of states of the lowest
peaks turns out to be identical regardless the number of electrons M_e. Whereas
these electron-solid phases are reminiscent to those expected in the
conventional two-dimensional electron gas in GaAs heterostructures in the
quantum Hall regime, the local density of states and the scaling relations we
highlight in this paper may be, in graphene, directly measured by spectroscopic
means, such as e.g. scanning tunneling microscopy.Comment: 8 pages, 7 figures; minor correction
Peer review and citation data in predicting university rankings, a large-scale analysis
Most Performance-based Research Funding Systems (PRFS) draw on peer review and bibliometric indicators, two different method- ologies which are sometimes combined. A common argument against the use of indicators in such research evaluation exercises is their low corre- lation at the article level with peer review judgments. In this study, we analyse 191,000 papers from 154 higher education institutes which were peer reviewed in a national research evaluation exercise. We combine these data with 6.95 million citations to the original papers. We show that when citation-based indicators are applied at the institutional or departmental level, rather than at the level of individual papers, surpris- ingly large correlations with peer review judgments can be observed, up to r <= 0.802, n = 37, p < 0.001 for some disciplines. In our evaluation of ranking prediction performance based on citation data, we show we can reduce the mean rank prediction error by 25% compared to previous work. This suggests that citation-based indicators are sufficiently aligned with peer review results at the institutional level to be used to lessen the overall burden of peer review on national evaluation exercises leading to considerable cost savings
Preparation and Measurement Uncertainty in Quantum Mechanics
This thesis addresses two forms of quantum uncertainty. In part I, we focus on preparation uncertainty, an expression of the fact that there are sets of observables for which the induced probability distributions are not simultaneously sharp in any state. We exactly characterise the preparation uncertainty regions for several finite dimensional case studies, including a new derivation of the preparation uncertainty region for the Pauli observables of qubits, and two qutrit case studies which have not previously been addressed in the literature. We also consider the variance based preparation uncertainty for position and momentum observables for the well known “particle in a box” system. We see that the appropriate momentum observable is not given by the spectral measure of a self-adjoint operator, although the position observable is. The box system lacks the phase-space symmetry used to determine the free particle and particle on a ring systems so determining the box uncertainty region is rather more difficult than in these cases. We give upper and lower bounds on the boundary of the uncertainty region, and show that our upper bound is exact in an interval.
In part II we turn our attention to measurement uncertainty, exploring the space of compatible joint approximations to incompatible target observables. We prove a general theorem, which shows that, for a broad class of figures of merit, the optimal compatible approximations to covariant targets are themselves covariant. This substantially simplifies the problem of determining measurement uncertainty regions for covariant observables, since the space of covariant compatible approximations is smaller than the space of all compatible approximations. We employ this theorem to derive measurement uncertainty regions for three mutually orthogonal Pauli observables, and for the quantum Fourier pair acting in any finite dimension
Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO
Although the rutile structure of TiO is stable at high temperatures, the
conventional quasiharmonic approximation predicts that several acoustic phonons
decrease anomalously to zero frequency with thermal expansion, incorrectly
predicting a structural collapse at temperatures well below 1000\,K. Inelastic
neutron scattering was used to measure the temperature dependence of the phonon
density of states (DOS) of rutile TiO from 300 to 1373\,K. Surprisingly,
these anomalous acoustic phonons were found to increase in frequency with
temperature. First-principles calculations showed that with lattice expansion,
the potentials for the anomalous acoustic phonons transform from quadratic to
quartic, stabilizing the rutile phase at high temperatures. In these modes, the
vibrational displacements of adjacent Ti and O atoms cause variations in
hybridization of electrons of Ti and electrons of O atoms. With
thermal expansion, the energy variation in this "phonon-tracked hybridization"
flattens the bottom of the interatomic potential well between Ti and O atoms,
and induces a quarticity in the phonon potential.Comment: 7 pages, 6 figures, supplemental material (3 figures
- …