7,393 research outputs found

    Location of Solution Channels and Sinkholes at Dam Sites and Backwater Areas by Seismic Methods: Part I

    Get PDF
    The basic concepts associated with the sledge hammer seismic refraction survey are reviewed and a modified version called down hole shooting is discussed. The latter method has distinct advantages for rock surface profiling. These include: calibration at the end points of the survey, measurement of vertical wave propagation velocities directly, and having a refracted wave ray path for almost the entire survey length. The down hole shooting seismic refraction survey has been simulated with the digital computer. The method can handle any shaped rock surface profile and generates corresponding travel time curves for the forward and reverse profile surveys. This program was used to systematically study the effects of anomalies on the travel time curves. A method of data reduction was developed that enables an estimate of the rock surface profile to be made from the travel time data. The procedure involves the use of a reference depth line which connects the end points of a survey and the travel time curves for this reference depth line. Field tests were performed at four sites having soil and rock characteristics different from each other. Typical results are given. Rock surface profiles are estimated from the travel time curves using the procedure developed and these are compared with the depth to rock by proof drilling. Finally, the sources of error are discussed and some limitations of use are presented. For the sledge hammer method to be used for rock surface profiling, the rock surface should be within 25 to 30 ft of the soil surface and the minimum width of solution channel that can be sensed with this method is on the order of two feet. Recommendations for additional research are also given

    Coking of JP-4 fuels in electrically heated metal tubes

    Get PDF
    A limited exploratory investigation of the rate of coking of four JP-4 fuels in electrically heated metal tubes was conducted in order to provide design information for fuel prevaporizers for turbojet-engine combustors. The fuels tested included two production and two minimum-quality JP-4 type fuels. The heating tube was operated at fuel pressures of approximately 500, 400, and 50 pounds per square inch. The operating fuel temperature was varied between approximately 600 degrees and 1200 degrees F

    Substitutions near the hemagglutinin receptor-binding site determine the antigenic evolution of influenza A H3N2 viruses in U.S. swine

    Get PDF
    Swine influenza A virus is an endemic and economically important pathogen in pigs, with the potential to infect other host species. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major component in swine influenza A vaccines. However, as a result of antigenic drift, vaccine strains must be regularly updated to reflect currently circulating strains. Characterizing the cross-reactivity between strains in pigs and seasonal influenza virus strains in humans is also important in assessing the relative risk of interspecies transmission of viruses from one host population to the other. Hemagglutination inhibition (HI) assay data for swine and human H3N2 viruses were used with antigenic cartography to quantify the antigenic differences among H3N2 viruses isolated from pigs in the United States from 1998 to 2013 and the relative cross-reactivity between these viruses and current human seasonal influenza A virus strains. Two primary antigenic clusters were found circulating in the pig population, but with enough diversity within and between the clusters to suggest updates in vaccine strains are needed. We identified single amino acid substitutions that are likely responsible for antigenic differences between the two primary antigenic clusters and between each antigenic cluster and outliers. The antigenic distance between current seasonal influenza virus H3 strains in humans and those endemic in swine suggests that population immunity may not prevent the introduction of human viruses into pigs, and possibly vice versa, reinforcing the need to monitor and prepare for potential incursions

    Minimizing the stochasticity of halos in large-scale structure surveys

    Full text link
    In recent work (Seljak, Hamaus and Desjacques 2009) it was found that weighting central halo galaxies by halo mass can significantly suppress their stochasticity relative to the dark matter, well below the Poisson model expectation. In this paper we extend this study with the goal of finding the optimal mass-dependent halo weighting and use NN-body simulations to perform a general analysis of halo stochasticity and its dependence on halo mass. We investigate the stochasticity matrix, defined as Cij<(δibiδm)(δjbjδm)>C_{ij}\equiv<(\delta_i -b_i\delta_m)(\delta_j-b_j\delta_m)>, where δm\delta_m is the dark matter overdensity in Fourier space, δi\delta_i the halo overdensity of the ii-th halo mass bin and bib_i the halo bias. In contrast to the Poisson model predictions we detect nonvanishing correlations between different mass bins. We also find the diagonal terms to be sub-Poissonian for the highest-mass halos. The diagonalization of this matrix results in one large and one low eigenvalue, with the remaining eigenvalues close to the Poisson prediction 1/nˉ1/\bar{n}, where nˉ\bar{n} is the mean halo number density. The eigenmode with the lowest eigenvalue contains most of the information and the corresponding eigenvector provides an optimal weighting function to minimize the stochasticity between halos and dark matter. We find this optimal weighting function to match linear mass weighting at high masses, while at the low-mass end the weights approach a constant whose value depends on the low-mass cut in the halo mass function. Finally, we employ the halo model to derive the stochasticity matrix and the scale-dependent bias from an analytical perspective. It is remarkably successful in reproducing our numerical results and predicts that the stochasticity between halos and the dark matter can be reduced further when going to halo masses lower than we can resolve in current simulations.Comment: 17 pages, 14 figures, matched the published version in Phys. Rev. D including one new figur

    Numerical simulations of string networks in the Abelian-Higgs model

    Get PDF
    We present the results of a field theory simulation of networks of strings in the Abelian Higgs model. Starting from a random initial configuration we show that the resulting vortex tangle approaches a self-similar regime in which the length density of lines of zeros of ϕ\phi reduces as t2t^{-2}. We demonstrate that the network loses energy directly into scalar and gauge radiation. These results support a recent claim that particle production, and not gravitational radiation, is the dominant energy loss mechanism for cosmic strings. This means that cosmic strings in Grand Unified Theories are severely constrained by high energy cosmic ray fluxes: either they are ruled out, or an implausibly small fraction of their energy ends up in quarks and leptons.Comment: 4pp RevTeX, 3 eps figures, clarifications and new results included, to be published in Phys. Rev. Let

    Three very young HgMn stars in the Orion OB1 Association

    Get PDF
    We report the detection of three mercury-manganese stars in the Orion OB1 association. HD 37886 and BD-0 984 are in the approximately 1.7 million year old Orion OB1b. HD 37492 is in the approximately 4.6 million year old Orion OB1c. Orion OB1b is now the youngest cluster with known HgMn star members. This places an observational upper limit on the time scale needed to produce the chemical peculiarities seen in mercury-manganese stars, which should help in the search for the cause or causes of the peculiar abundances in HgMn and other chemically peculiar upper main sequence stars.Comment: 8 pages including 1 figure. To appear in Astrophysical Journal Letter

    The power spectra of CMB and density fluctuations seeded by local cosmic strings

    Get PDF
    We compute the power spectra in the cosmic microwave background and cold dark matter (CDM) fluctuations seeded by strings, using the largest string simulations performed so far to evaluate the two-point functions of their stress energy tensor. We find that local strings differ from global defects in that the scalar components of the stress-energy tensor dominate over vector and tensor components. This result has far reaching consequences. We find that cosmic strings exhibit a single Doppler peak of acceptable height at high \ell. They also seem to have a less severe bias problem than global defects, although the CDM power spectrum in the ``standard'' cosmology (flat geometry, zero cosmological constant, 5% baryonic component) is the wrong shape to fit large scale structure data

    The transcriptomic evolution of mammalian pregnancy:gene expression innovations in endometrial stromal fibroblasts

    Get PDF
    The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type “neo-ESF” in contrast to “paleo-ESF” which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation

    Feasibility of intensity-modulated and image-guided radiotherapy for functional organ preservation in locally advanced laryngeal cancer

    Get PDF
    Purpose: The study aims to assess the feasibility of intensity-modulated and image-guided radiotherapy (IMRT, and IGRT, respectively) for functional preservation in locally advanced laryngeal cancer. A retrospective review of 27 patients undergoing concurrent chemoradiation for locally advanced laryngeal cancers (8 IMRT, 19 IGRT) was undertaken. In addition to regular clinical examinations, all patients had PET imaging at 4 months and 10 months after radiotherapy, then yearly. Loco-regional control, speech quality and feeding-tube dependency were assessed during follow-up visits. Results: At a median follow-up of 20 months (range 6-57 months), four out of 27 patients (14.8%) developed local recurrence and underwent salvage total laryngectomy. One patient developed distant metastases following salvage surgery. Among the 23 patients who conserved their larynx with no sign of recurrence at last follow-up, 22 (95%) reported normal or near normal voice quality, allowing them to communicate adequately. Four patients (14.8%) had long-term tube feeding-dependency because of severe dysphagia (2 patients) and chronic aspiration (2 patients, with ensuing death from aspiration pneumonia in one patient). Conclusions and Clinical Relevance: Functional laryngeal preservation is feasible with IMRT and IGRT for locally advanced laryngeal cancer. However, dysphagia and aspiration remain serious complications, due most likely to high radiation dose delivery to the pharyngeal musculatures. © 2012 Nguyen et al
    corecore