5,547 research outputs found

    A general theory of avian migratory connectivity

    Get PDF

    Asphericity Can Cause Nonuniform Lithium Intercalation in Battery Active Particles

    Get PDF
    Uniform intercalation is desired to enable next-generation Li-ion batteries. While we expect nonuniformity in materials undergoing a phase change, single-phase intercalation materials such as nickel manganese cobalt oxide are believed to lithiate uniformly at the particle/electrolyte interface. However, recent imaging reveals nonuniform lithiation. Motivated by this discrepancy, we examine if aspherical particle shape can cause such nonuniformity since the conventional belief is based on spherical particle theory. We obtain real particle geometries using rapid lab-based X-ray computed tomography and subsequently perform physics-based calculations accounting for electrochemical reactions at the particle/electrolyte interface and lithium transport inside the particle bulk. The aspherical geometry breaks the symmetry and causes nonuniform reaction distribution. Such nonuniformity is exacerbated as the particle becomes more aspherical. The proposed mechanism represents a fundamental limit on achievable lithiation uniformity in aspherical particles in the absence of other mechanisms causing inhomogeneity, such as grain structure, nonuniform carbon-binder coating, etc

    The Leeway of Shipping Containers at Different Immersion Levels

    Full text link
    The leeway of 20-foot containers in typical distress conditions is established through field experiments in a Norwegian fjord and in open-ocean conditions off the coast of France with wind speed ranging from calm to 14 m/s. The experimental setup is described in detail and certain recommendations given for experiments on objects of this size. The results are compared with the leeway of a scaled-down container before the full set of measured leeway characteristics are compared with a semi-analytical model of immersed containers. Our results are broadly consistent with the semi-analytical model, but the model is found to be sensitive to choice of drag coefficient and makes no estimate of the cross-wind leeway of containers. We extend the results from the semi-analytical immersion model by extrapolating the observed leeway divergence and estimates of the experimental uncertainty to various realistic immersion levels. The sensitivity of these leeway estimates at different immersion levels are tested using a stochastic trajectory model. Search areas are found to be sensitive to the exact immersion levels, the choice of drag coefficient and somewhat less sensitive to the inclusion of leeway divergence. We further compare the search areas thus found with a range of trajectories estimated using the semi-analytical model with only perturbations to the immersion level. We find that the search areas calculated without estimates of crosswind leeway and its uncertainty will grossly underestimate the rate of expansion of the search areas. We recommend that stochastic trajectory models of container drift should account for these uncertainties by generating search areas for different immersion levels and with the uncertainties in crosswind and downwind leeway reported from our field experiments.Comment: 25 pages, 11 figures and 5 tables; Ocean Dynamics, Special Issue on Advances in Search and Rescue at Sea (2012

    Human cytomegalovirus-encoded pUL7 is a novel CEACAM1-like molecule responsible for promotion of angiogenesis.

    Get PDF
    UNLABELLED: Persistent human cytomegalovirus (HCMV) infection has been linked to several diseases, including atherosclerosis, transplant vascular sclerosis (TVS), restenosis, and glioblastoma. We have previously shown that factors secreted from HCMV-infected cells induce angiogenesis and that this process is due, at least in part, to increased secretion of interleukin-6 (IL-6). In order to identify the HCMV gene(s) responsible for angiogenesis promotion, we constructed a large panel of replication-competent HCMV recombinants. One HCMV recombinant deleted for UL1 to UL10 was unable to induce secretion of factors necessary for angiogenesis. Fine mapping using additional HCMV recombinants identified UL7 as a viral gene required for production of angiogenic factors from HCMV-infected cells. Transient expression of pUL7 induced phosphorylation of STAT3 and ERK1/2 MAP kinases and production of proangiogenic factors, including IL-6. Addition of recombinant pUL7 to cells was sufficient for angiogenesis and was again associated with increased IL-6 expression. Analysis of the UL7 structure revealed a conserved domain similar to the immunoglobulin superfamily domain and related to the N-terminal V-like domain of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Our report therefore identifies UL7 as a novel HCMV-encoded molecule that is both structurally and functionally related to cellular CEACAM1, a proangiogenic factor highly expressed during vasculogenesis. IMPORTANCE: A hallmark of cytomegalovirus (CMV) infection is its ability to modulate the host cellular machinery, resulting in the secretion of factors associated with long-term diseases such as vascular disorders and cancer. We previously demonstrated that HCMV infection alters the types and quantities of bioactive proteins released from cells (designated the HCMV secretome) that are involved in the promotion of angiogenesis and wound healing. A key proangiogenic and antiapoptotic factor identified from a proteomic-based approach was IL-6. In the present report, we show for the first time that HCMV UL7 encodes a soluble molecule that is a structural and functional homologue of the CEACAM1 proangiogenic cellular factor. This report thereby identifies a critical component of the HCMV secretome that may be responsible, at least in part, for the vascular dysregulation associated with persistent HCMV infection

    H_2 emission arises outside photodissociation regions in ultra-luminous infrared galaxies

    Full text link
    Ultra-luminous infrared galaxies are among the most luminous objects in the local universe and are thought to be powered by intense star formation. It has been shown that in these objects the rotational spectral lines of molecular hydrogen observed at mid-infrared wavelengths are not affected by dust obscuration, leaving unresolved the source of excitation of this emission. Here I report an analysis of archival Spitzer Space Telescope data on ultra-luminous infrared galaxies and demonstrate that star formation regions are buried inside optically thick clouds of gas and dust, so that dust obscuration affects star-formation indicators but not molecular hydrogen. I thereby establish that the emission of H_2 is not co-spatial with the buried starburst activity and originates outside the obscured regions. This is rather surprising in light of the standard view that H_2 emission is directly associated with star-formation activity. Instead, I propose that H_2 emission in these objects traces shocks in the surrounding material, which are in turn excited by interactions with nearby galaxies, and that powerful large-scale shocks cooling by means of H_2 emission may be much more common than previously thought. In the early universe, a boost in H_2 emission by this process may speed up the cooling of matter as it collapsed to form the first stars and galaxies and would make these first structures more readily observable.Comment: Main text and supplemental information, 21 pages including 6 figures, 2 table

    Use of high-content imaging to quantify transduction of AAV-PHP viruses in the brain following systemic delivery

    Get PDF
    The engineering of the AAV-PHP capsids was an important development for CNS research and the modulation of gene expression in the brain. They cross the blood brain barrier and transduce brain cells after intravenous systemic delivery, a property dependent on the genotype of Ly6a, the AAV-PHP capsid receptor. It is important to determine the transduction efficiency of a given viral preparation, as well as the comparative tropism for different brain cells; however, manual estimation of adeno-associated viral transduction efficiencies can be biased and time consuming. Therefore, we have used the Opera Phenix high-content screening system, equipped with the Harmony processing and analysis software, to reduce bias and develop an automated approach to determining transduction efficiency in the mouse brain. We used R Studio and ‘gatepoints’ to segment the data captured from coronal brain sections into brain regions of interest. C57BL/6J and CBA/Ca mice were injected with an AAV-PHP.B virus containing a green fluorescent protein reporter with a nuclear localization signal. Coronal sections at 600 μm intervals throughout the entire brain were stained with Hoechst dye, combined with immunofluorescence to NeuN and green fluorescent protein to identify all cell nuclei, neurons and transduced cells, respectively. Automated data analysis was applied to give an estimate of neuronal percentages and transduction efficiencies throughout the entire brain as well as for the cortex, striatum and hippocampus. The data from each coronal section from a given mouse were highly comparable. The percentage of neurons in the C57BL/6J and CBA/Ca brains was approximately 40% and this was higher in the cortex than striatum and hippocampus. The systemic injection of AAV-PHP.B resulted in similar transduction rates across the entire brain for C57BL/6J mice. Approximately 10–15% of all cells were transduced, with neuronal transduction efficiencies ranging from 5% to 15%, estimates that were similar across brain regions, and were in contrast to the much more localized transduction efficiencies achieved through intracerebral injection. We confirmed that the delivery of the AAV-PHP.B viruses to the brain from the vasculature resulted in widespread transduction. Our methodology allows the rapid comparison of transduction rates between brain regions producing comparable data to more time-consuming approaches. The methodology developed here can be applied to the automated quantification of any parameter of interest that can be captured as a fluorescent signal

    Assessing the impact of increasing lung screening eligibility by relaxing the maximum years-since-quit threshold. A simulation modeling study

    Get PDF
    BackgroundIn 2021, the US Preventive Services Task Force expanded its lung screening recommendation to include persons aged 50–80 years who had ever smoked and had at least 20 pack-years of exposure and less than 15 years since quitting (YSQ). However, studies have suggested that screening persons who formerly smoked with longer YSQ could be beneficial.MethodsThe authors used two validated lung cancer models to assess the benefits and harms of screening using various YSQ thresholds (10, 15, 20, 25, 30, and no YSQ) and the age at which screening was stopped. The impact of enforcing the YSQ criterion only at entry, but not at exit, also was evaluated. Outcomes included the number of screens, the percentage ever screened, screening benefits (lung cancer deaths averted, life-years gained), and harms (false-positive tests, overdiagnosed cases, radiation-induced lung cancer deaths). Sensitivity analyses were conducted to evaluate the effect of restricting screening to those who had at least 5 years of life expectancy.ResultsAs the YSQ criterion was relaxed, the number of screens and the benefits and harms of screening increased. Raising the age at which to stop screening age resulted in additional benefits but with more overdiagnosis, as expected, because screening among those older than 80 years increased. Limiting screening to those who had at least 5 years of life expectancy would maintain most of the benefits while considerably reducing the harms.ConclusionsExpanding screening to persons who formerly smoked and have greater than 15 YSQ would result in considerable increases in deaths averted and life-years gained. Although additional harms would occur, these could be moderated by ensuring that screening is restricted to only those with reasonable life expectancy
    • …
    corecore