11 research outputs found

    An investigation into the anti-cancer mechanism of garlic-related organosulfur compounds

    Get PDF
    Includes abstract.~Includes bibliographical references.Crushed garlic contains organosulfur compounds (OSC), which are reported to have cancer chemotherapeutic properties both in vitro and in vivo. A library of 15 organosulfur analogues were obtained as mechanistic probes in WHCO1 oesophageal cancer cells. Structure-activity studies showed a positive correlation between the anti-proliferative-IC50 of disulfides and the relative stability of their anion leaving groups, as assessed through resonance and quantified by predictive pKa-values

    Immunogenicity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Ad26.CoV2.S Vaccination in People Living With Human Immunodeficiency Virus (HIV)

    Get PDF
    BACKGROUND: People living with HIV (PLWH) have been reported to have a higher risk of more severe Covid-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2 infected unvaccinated participants. METHODS: We enrolled participants who vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in health care workers (HCW). PLWH in this group had well controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant. RESULTS: Majority of Ad26.CoV2.S vaccinated HCW were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared to the infected only group and 26-fold higher relative to the vaccinated only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2 infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of non-responders, with the highest frequency of non-responders in people with HIV viremia. Vaccinated only participants showed low neutralization capacity. CONCLUSIONS: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2 infected and non-vaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals

    Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization

    Get PDF
    The emergence of Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. We investigated whether Omicron escapes antibody neutralization in South Africans vaccinated with Pfizer BNT162b2. We also investigated if Omicron requires the ACE2 receptor to infect cells. We isolated and sequence confirmed live Omicron virus from an infected person in South Africa and compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain, observing that Omicron still required ACE2 to infect. For neutralization, blood samples were taken soon after vaccination from participants who were vaccinated and previously infected or vaccinated with no evidence of previous infection. Neutralization of ancestral virus was much higher in infected and vaccinated versus vaccinated only participants but both groups showed a 22-fold escape from vaccine elicited neutralization by the Omicron variant. However, in the previously infected and vaccinated group, the level of residual neutralization of Omicron was similar to the level of neutralization of ancestral virus observed in the vaccination only group. These data support the notion that, provided high neutralization capacity is elicited by vaccination/boosting approaches, reasonable effectiveness against Omicron may be maintained

    Immunogenicity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Ad26.CoV2.S Vaccination in People Living With Human Immunodeficiency Virus (HIV).

    Get PDF
    BACKGROUND: People living with HIV (PLWH) have been reported to have a higher risk of more severe COVID-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2-infected unvaccinated participants. METHODS: We enrolled participants who were vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in healthcare workers (HCWs). PLWH in this group had well-controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant. RESULTS: Most Ad26.CoV2.S vaccinated HCWs were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared with the infected-only group and 26-fold higher relative to the vaccinated-only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2-infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of nonresponders, with the highest frequency of nonresponders in people with HIV viremia. Vaccinated-only participants showed low neutralization capacity. CONCLUSIONS: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well-controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2-infected and nonvaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals

    Age, Disease Severity and Ethnicity Influence Humoral Responses in a Multi-Ethnic COVID-19 Cohort

    Get PDF
    The COVID-19 pandemic has affected all individuals across the globe in some way. Despite large numbers of reported seroprevalence studies, there remains a limited understanding of how the magnitude and epitope utilization of the humoral immune response to SARS-CoV-2 viral anti-gens varies within populations following natural infection. Here, we designed a quantitative, multi-epitope protein microarray comprising various nucleocapsid protein structural motifs, including two structural domains and three intrinsically disordered regions. Quantitative data from the microarray provided complete differentiation between cases and pre-pandemic controls (100% sensitivity and specificity) in a case-control cohort (n = 100). We then assessed the influence of disease severity, age, and ethnicity on the strength and breadth of the humoral response in a multi-ethnic cohort (n = 138). As expected, patients with severe disease showed significantly higher antibody titers and interestingly also had significantly broader epitope coverage. A significant increase in antibody titer and epitope coverage was observed with increasing age, in both mild and severe disease, which is promising for vaccine efficacy in older individuals. Additionally, we observed significant differences in the breadth and strength of the humoral immune response in relation to ethnicity, which may reflect differences in genetic and lifestyle factors. Furthermore, our data enabled localization of the immuno-dominant epitope to the C-terminal structural domain of the viral nucleocapsid protein in two independent cohorts. Overall, we have designed, validated, and tested an advanced serological assay that enables accurate quantitation of the humoral response post natural infection and that has revealed unexpected differences in the magnitude and epitope utilization within a population

    An immunoproteomic approach to identifying cancer-associated autoantibody biomarkers

    Get PDF
    Cancer is a heterogenous disease capable of forming and spreading in most tissues of the human body. Cancer screening and diagnosis can be performed through medical procedures, which are highly invasive, requiring an intensive infrastructure. It is therefore important to create cost-effective, non-invasive cancer diagnostic tools that also gives an indication of disease prognosis. With this in mind, the Blackburn lab previously created a cancer-testis antigen microarray (CT100plus) functionalised with tumour-associated and tumour-specific antigens, capable of detecting plasma- or serum-derived autoantibodies in the picogram per millilitre (pg/ml) range. In this thesis, a newly established statistical pipeline was used to analyse colorectal cancer (CRC) patient-derived CT100plus data. Using the pipeline, the 10 antigens with the highest receiver operator characteristic (ROC)-derived area under the ROC curve (AUC)-values were identified as potential autoantibody-based biomarkers. The top 10 antigen biomarker candidates include CEACAM 1, COL6A1, GRWD1, MAGEA1, MAGEA5, MAGEA10, NY-CO-1, SGY-1, SPANXB1 and THEG. Using these biomarker candidates, distinct clusters of healthy controls (HCs) and CRC patients were observed using both unsupervised hierarchical clustering and principle component analysis (PCA) analysis. Combinatorial ROC analysis indicates that CEACAM1 and GRWD1 as the top autoantigen combination for CRC diagnosis, together producing sensitivity-, and specificity-, and AUC-values of 1.00, 0.77 and 0.94, respectively. Furthermore, other top autoantigens, including COL6A1, THEG and CEACAM7, a homologue of CEACAM1, were also identified in this thesis by affinity purification-mass spectrometry (AP-MS) for patients from the same cohort, providing supporting evidence that these antigens are associated with CRC. The CT100plus microarray content was enzymatically modified to include citrullinated proteins, with the subsequent assessment of CRC patient autoantibody response. Significantly (p-value ≤ 0.05; adjusted p-value ≤ 0.05) higher signal intensities were detected in CRC patients versus HCs for citrullinated CDK7, MAGEB1, MAGEB5, MAGEB6 and SYCP1, whereas no significant (adjusted p-value > 0.05) difference in autoantibody signal was detected for these autoantigens on the noncitrullinated microarray for the same patient cohort. ROC analyses of these antigens resulted in 2 an AUC-, sensitivity- and specificity-values of 0.91, 0.87 and 0.89, respectively. Together, this thesisshowsfor the first time that cancer patients elicit an autoantibody response to citrullinated proteins, resulting in potential novel CRC biomarkers. A novel AP-MS assay was developed to detect autoantibody responses to autologous native CRC tissue proteins. Using the optimised methodology, proteins or homologues of proteins that were significantly (> cut-off value) detected on the CT100plus microarray for the same 5 patients were re-identified by the orthogonal AP-MS method. Using the methodology, PAD2, an enzyme that catalyses the conversion of arginine to citrulline was also identified. In addition, citrullinated antigens associated with cancer were identified, including homologues of CDK7 and MAGEB supporting the conclusion that citrullinated homologues of these proteins induce an autoantibody response in CRC patients. Finally, serum and/or plasma samples of a cohort melanoma patients were analysed using the CT100plus microarray, and autoantibody signals were compared to those of healthy control (HC) samples. Using the established statistical pipeline, the 10 antigens with the highest ROC-derived AUC-values were identified as potential biomarkers. The top 10 biomarker autoantigen candidates for melanoma included CEACAM 1, DPPA2, FGFR2, ITGB1, MAGEA10, NANOG, PIM1, SPANXB1, THEG and XAGE1B. Using these biomarker candidates, distinct clusters of HCs and melanoma patients were identified in both unsupervised hierarchical clustering and PCA analysis. Combinatorial ROC analysis indicates that CEACAM1 and FGFR2 were identified as the top antigens for melanoma diagnosis, together producing sensitivity-, and specificity-, and AUCvalues of 0.96, 0.94 and 0.93, respectively. In conclusion, a statistical pipeline was established for microarray data, enabling the identification of potential antigens associated with cancer diagnosis, and the potential to determine disease prognosis. Using the established pipeline, cancer antigens associated with CRC and melanoma were identified. In addition, an AP-MS assay was developed for the identification of known and novel cancer antigen that can be added to the customisable CT100plus microarray

    Age, Disease Severity and Ethnicity Influence Humoral Responses in a Multi-Ethnic COVID-19 Cohort

    No full text
    The COVID-19 pandemic has affected all individuals across the globe in some way. Despite large numbers of reported seroprevalence studies, there remains a limited understanding of how the magnitude and epitope utilization of the humoral immune response to SARS-CoV-2 viral anti-gens varies within populations following natural infection. Here, we designed a quantitative, multi-epitope protein microarray comprising various nucleocapsid protein structural motifs, including two structural domains and three intrinsically disordered regions. Quantitative data from the microarray provided complete differentiation between cases and pre-pandemic controls (100% sensitivity and specificity) in a case-control cohort (n = 100). We then assessed the influence of disease severity, age, and ethnicity on the strength and breadth of the humoral response in a multi-ethnic cohort (n = 138). As expected, patients with severe disease showed significantly higher antibody titers and interestingly also had significantly broader epitope coverage. A significant increase in antibody titer and epitope coverage was observed with increasing age, in both mild and severe disease, which is promising for vaccine efficacy in older individuals. Additionally, we observed significant differences in the breadth and strength of the humoral immune response in relation to ethnicity, which may reflect differences in genetic and lifestyle factors. Furthermore, our data enabled localization of the immuno-dominant epitope to the C-terminal structural domain of the viral nucleocapsid protein in two independent cohorts. Overall, we have designed, validated, and tested an advanced serological assay that enables accurate quantitation of the humoral response post natural infection and that has revealed unexpected differences in the magnitude and epitope utilization within a population

    Epitope Coverage of Anti-SARS-CoV-2 Nucleocapsid IgA and IgG Antibodies Correlates with Protection against Re-Infection by New Variants in Subsequent Waves of the COVID-19 Pandemic

    No full text
    The COVID-19 pandemic continues to affect individuals across the globe, with some individuals experiencing more severe disease than others. The relatively high frequency of re-infections and breakthrough infections observed with SARS-CoV-2 highlights the importance of extending our understanding of immunity to COVID-19. Here, we aim to shed light on the importance of antibody titres and epitope utilization in protection from re-infection. Health care workers are highly exposed to SARS-CoV-2 and are therefore also more likely to become re-infected. We utilized quantitative, multi-antigen, multi-epitope SARS-CoV-2 protein microarrays to measure IgG and IgA titres against various domains of the nucleocapsid and spike proteins. Potential re-infections in a large, diverse health care worker cohort (N = 300) during the second wave of the pandemic were identified by assessing the IgG anti-N titres before and after the second wave. We assessed epitope coverage and antibody titres between the ‘single infection’ and ‘re-infection’ groups. Clear differences were observed in the breadth of the anti-N response before the second wave, with the epitope coverage for both IgG (p = 0.019) and IgA (p = 0.015) being significantly increased in those who did not become re-infected compared to those who did. Additionally, the IgG anti-N (p = 0.004) and anti-S titres (p = 0.018) were significantly higher in those not re-infected. These results highlight the importance of the breadth of elicited antibody epitope coverage following natural infection in protection from re-infection and disease in the COVID-19 pandemic

    Humoral immunoprofiling identifies novel biomarkers and an immune suppressive autoantibody phenotype at the site of disease in pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer, with minimal response to therapeutic intervention and with 85% of cases diagnosed at an advanced stage due to lack of early symptoms, highlighting the importance of understanding PDAC immunology in greater detail. Here, we applied an immunoproteomic approach to investigate autoantibody responses against cancer-testis and tumor-associated antigens in PDAC using a high-throughput multiplexed protein microarray platform, comparing humoral immune responses in serum and at the site of disease in order to shed new light on immune responses in the tumor microenvironment. We simultaneously quantified serum or tissue IgG and IgA antibody isotypes and subclasses in a cohort of PDAC, disease control and healthy patients, observing inter alia that subclass utilization in tumor tissue samples was predominantly immune suppressive IgG4 and inflammatory IgA2, contrasting with predominant IgG3 and IgA1 subclass utilization in matched sera and implying local autoantibody production at the site of disease in an immune-tolerant environment. By comparison, serum autoantibody subclass profiling for the disease controls identified IgG4, IgG1, and IgA1 as the abundant subclasses. Combinatorial analysis of serum autoantibody responses identified panels of candidate biomarkers. The top IgG panel included ACVR2B, GAGE1, LEMD1, MAGEB1 and PAGE1 (sensitivity, specificity and AUC values of 0.933, 0.767 and 0.906). Conversely, the top IgA panel included AURKA, GAGE1, MAGEA10, PLEKHA5 and XAGE3aV1 (sensitivity, specificity, and AUC values of 1.000, 0.800, and 0.954). Assessment of antigen-specific serum autoantibody glycoforms revealed abundant sialylation on IgA in PDAC, consistent with an immune suppressive IgA response to disease

    Longitudinal IgA and IgG Response, and ACE2 Binding Blockade, to Full-Length SARS-CoV-2 Spike Protein Variants in a Population of Black PLWH Vaccinated with ChAdOx1 nCoV-19

    Get PDF
    Vaccines against SARS-CoV-2 have been pivotal in overcoming the COVID-19 pandemic yet understanding the subsequent outcomes and immunological effects remain crucial, especially for at-risk groups e.g., people living with human immunodeficiency virus (HIV) (PLWH). In this study we report the longitudinal IgA and IgG antibody titers, as well as antibody-mediated angiotensin converting enzyme 2 (ACE2) binding blockade, against the SARS-CoV-2 spike (S) proteins after 1 and 2 doses of the ChAdOx1 nCoV-19 vaccine in a population of Black PLWH. Here, we report that PLWH (N = 103) did not produce an anti-S IgA response after infection or vaccination, however, anti-S IgG was detected in response to vaccination and infection, with the highest level detected for infected vaccinated participants. The anti-IgG and ACE2 blockade assays revealed that both vaccination and infection resulted in IgG production, however, only vaccination resulted in a moderate increase in ACE2 binding blockade to the ancestral S protein. Vaccination with a previous infection results in the greatest anti-S IgG and ACE2 blockade for the ancestral S protein. In conclusion, PLWH produce an anti-S IgG response to the ChAdOx1 nCoV-19 vaccine and/or infection, and ChAdOx1 nCoV-19 vaccination with a previous infection produced more neutralizing antibodies than vaccination alone
    corecore