209 research outputs found
Impurity transport in a mixed-collisionality stellarator plasma
A potential threat to the performance of magnetically confined fusion plasmas
is the problem of impurity accumulation, which causes the concentration of
highly charged impurity ions to rise uncontrollably in the center of the plasma
and spoil the energy confinement by excessive radiation. It has long been
thought that the collisional transport of impurities in stellarators always
leads to such accumulation (if the electric field points inwards, which is
usually the case), whereas tokamaks, being axisymmetric, can benefit from
"temperature screening", i.e., an outward flux of impurities driven by the
temperature gradient. Here it is shown, using analytical techniques supported
by results from a new numerical code, that such screening can arise in
stellarator plasmas too, and indeed does so in one of the most relevant
operating regimes, where the impurities are highly collisional whilst the bulk
plasma is in any of the low-collisionality regimes.Comment: 11 pages, 3 figure
Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma
The accumulation of impurities in the core of magnetically confined plasmas,
resulting from standard collisional transport mechanisms, is a known threat to
their performance as fusion energy sources. Whilst the axisymmetric tokamak
systems have been shown to benefit from the effect of temperature screening,
that is an outward flux of impurities driven by the temperature gradient,
impurity accumulation in stellarators was thought to be inevitable, driven
robustly by the inward pointing electric field characteristic of hot fusion
plasmas. We have shown in Helander et. al. (2017b) that such screening can in
principle also appear in stellarators, in the experimentally relevant mixed
collisionality regime, where a highly collisional impurity species is present
in a low collisionality bulk plasma. Details of the analytic calculation are
presented here, along with the effect of the impurity on the bulk ion flow,
which will ultimately affect the bulk contribution to the bootstrap current
Impurities in a non-axisymmetric plasma: transport and effect on bootstrap current
Impurities cause radiation losses and plasma dilution, and in stellarator
plasmas the neoclassical ambipolar radial electric field is often unfavorable
for avoiding strong impurity peaking. In this work we use a new continuum
drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative
Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014)
042503] which employs the full linearized Fokker-Planck-Landau operator, to
calculate neoclassical impurity transport coefficients for a Wendelstein 7-X
(W7-X) magnetic configuration. We compare SFINCS calculations with theoretical
asymptotes in the high collisionality limit. We observe and explain a
1/nu-scaling of the inter-species radial transport coefficient at low
collisionality, arising due to the field term in the inter-species collision
operator, and which is not found with simplified collision models even when
momentum correction is applied. However, this type of scaling disappears if a
radial electric field is present. We also use SFINCS to analyze how the
impurity content affects the neoclassical impurity dynamics and the bootstrap
current. We show that a change in plasma effective charge Zeff of order unity
can affect the bootstrap current enough to cause a deviation in the divertor
strike point locations.Comment: 36 pages, 13 figure
Optimization of flux-surface density variation in stellarator plasmas with respect to the transport of collisional impurities
Avoiding impurity accumulation is a requirement for steady-state stellarator
operation. The accumulation of impurities can be heavily affected by variations
in their density on the flux-surface. Using recently derived semi-analytic
expressions for the transport of a collisional impurity species with high-
and flux-surface density-variation in the presence of a low-collisionality bulk
ion species, we numerically optimize the impurity density-variation on the
flux-surface to minimize the radial peaking factor of the impurities. These
optimized density-variations can reduce the core impurity density by
(with the impurity charge number) in the Large Helical Device case
considered here, and by in a Wendelstein 7-X standard configuration
case. On the other hand, when the same procedure is used to find
density-variations that maximize the peaking factor, it is notably increased
compared to the case with no density-variation. This highlights the potential
importance of measuring and controlling these variations in experiments.Comment: 19 figures, 17 pages. Accepted into Nuclear Fusio
On collisional impurity transport in nonaxisymmetric plasmas
The presence of impurity species in magnetic confinement fusion devices leads to radiation losses and plasma dilution. Thus it is important to analyze impurity dynamics, and search for means to control them. In stellarator plasmas the neoclassical ambipolar radial electric field often points radially inwards (referred to as the ion root regime), causing impurities to accumulate in the core. This can limit the performance of nonaxisymmetric devices.
In the present work we analyze neoclassical impurity transport in stellarator plasmas using a recently developed continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker- Planck Iterative Neoclassical Conservative Solver). The study is performed for a case close to the edge of W7-X using the standard configuration magnetic geometry. We investigate the sensitivity of impurity transport to impurity charge, main species density and temperature gradients, as well as ion temperature.
At the studied radial location we find that the neoclassical impurity peaking factor can be very large, particularly for high-Z impurities. The ambipolar radial electric field is in the ion root regime, and impurity accumulation can thus be expected. The accumulation is strengthened by the large main species density and temperature gradients. Moreover we find that the size of the bootstrap current is affected by the value of the plasma effective charge, suggesting that employing a realistic ion composition can be important when calculating the bootstrap current
Predominant Spastic Paraparesis Associated With the D178N Mutation in PRNP
Here we report on a 70-year-old female presenting with an unusual progressive syndrome with fatal outcome. The predominant features in this case were spastic paraparesis, cognitive decline and respiratory failure. Relatives affected with a similar syndrome were previously diagnosed with lipofuscinosis. However, whole-genome sequencing (WGS) in our case did not reveal any pathogenic variants in genes associated with lipofuscinosis, but instead detected the known D178 variant in PRNP. The course of disease was rapid despite the presence of methione at codon 129 in the mutated and valine in the healthy allele of PRNP. Typical neuropathological abnormalities for familial fatal insomnia (FFI) were found, Western blot analysis suggested a type 2B prion protein isoform. The serendipitous diagnosis obtained with WGS illustrates a role for the method in elusive cases
Of wolves and bears: Seasonal drivers of interference and exploitation competition between apex predators
Competition between apex predators can alter the strength of top-down forcing, yet we know little about the behavioral mechanisms that drive competition in multipredator ecosystems. Interactions between predators can be synergistic (facilitative) or antagonistic (inhibitive), both of which are widespread in nature, vary in strength between species and across space and time, and affect predation patterns and predatorâprey dynamics. Recent research has suggested that gray wolf (Canis lupus) kill rates decrease where they are sympatric with brown bears (Ursus arctos), however, the mechanisms behind this pattern remain unknown. We used data from two long-term research projects in Scandinavia (Europe) and Yellowstone National Park (North America) to test the role of interference and exploitation competition from bears on wolf predatory behavior, where altered wolf handling and search time of prey in the presence of bears are indicative of interference and exploitation competition, respectively. Our results suggest the mechanisms driving competition between bears and wolves were dependent on the season and study system. During spring in Scandinavia, interference competition was the primary mechanism driving decreased kill rates for wolves sympatric with bears; handling time increased, but search time did not. In summer, however, when both bear and wolf predation focused on neonate moose, the behavioral mechanism switched to exploitation competition; search time increased, but handling time did not. Alternartively, interference competition did affect wolf predation dynamics in Yellowstone during summer, where wolves prey more evenly on neonate and adult ungulates. Here, bear presence at a carcass increased the amount of time wolves spent at carcasses of all sizes and wolf handling time for small prey, but decreased handling time for the largest prey. Wolves facilitate scavenging opportunities for bears, however, bears alter wolf predatory behavior via multiple pathways and are primarily antagonistic to wolves. Our study helps to clarify the behavioral mechanisms driving competition between apex predators, illustrating how interspecific interactions can manifest into population-level predation patterns.publishedVersio
Of wolves and bears: Seasonal drivers of interference and exploitation competition between apex predators
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Ecological Monographs published by Wiley Periodicals LLC on behalf of Ecological Society of America.Competition between apex predators can alter the strength of top-down forcing, yet we know little about the behavioral mechanisms that drive competition in multipredator ecosystems. Interactions between predators can be synergistic (facilitative) or antagonistic (inhibitive), both of which are widespread in nature, vary in strength between species and across space and time, and affect predation patterns and predatorâprey dynamics. Recent research has suggested that gray wolf (Canis lupus) kill rates decrease where they are sympatric with brown bears (Ursus arctos), however, the mechanisms behind this pattern remain unknown. We used data from two long-term research projects in Scandinavia (Europe) and Yellowstone National Park (North America) to test the role of interference and exploitation competition from bears on wolf predatory behavior, where altered wolf handling and search time of prey in the presence of bears are indicative of interference and exploitation competition, respectively. Our results suggest the mechanisms driving competition between bears and wolves were dependent on the season and study system. During spring in Scandinavia, interference competition was the primary mechanism driving decreased kill rates for wolves sympatric with bears; handling time increased, but search time did not. In summer, however, when both bear and wolf predation focused on neonate moose, the behavioral mechanism switched to exploitation competition; search time increased, but handling time did not. Alternartively, interference competition did affect wolf predation dynamics in Yellowstone during summer, where wolves prey more evenly on neonate and adult ungulates. Here, bear presence at a carcass increased the amount of time wolves spent at carcasses of all sizes and wolf handling time for small prey, but decreased handling time for the largest prey. Wolves facilitate scavenging opportunities for bears, however, bears alter wolf predatory behavior via multiple pathways and are primarily antagonistic to wolves. Our study helps to clarify the behavioral mechanisms driving competition between apex predators, illustrating how interspecific interactions can manifest into population-level predation patterns.publishedVersio
Religious Identity, Religious Attendance, and Parental Control
Using a national sample of adolescents aged 10â18 years and their parents (N = 5,117), this article examines whether parental religious identity and religious participation are associated with the ways in which parents control their children. We hypothesize that both religious orthodoxy and weekly religious attendance are related to heightened levels of three elements of parental control: monitoring activities, normative regulations, and network closure. Results indicate that an orthodox religious identity for Catholic and Protestant parents and higher levels of religious attendance for parents as a whole are associated with increases in monitoring activities and normative regulations of American adolescents
Cancer in Persons Working in Dry Cleaning in the Nordic Countries
U.S. studies have reported an increased risk of esophageal and some other cancers in dry cleaners exposed to tetrachloroethylene. We investigated whether the U.S. findings could be reproduced in the Nordic countries using a series of caseâcontrol studies nested in cohorts of laundry and dry-cleaning workers identified from the 1970 censuses in Denmark, Norway, Sweden, and Finland. Dry-cleaning work in the Nordic countries during the period when tetrachloroethylene was the dominant solvent was not associated with an increased risk of esophageal cancer [rate ratio (RR) = 0.76; 95% confidence interval (CI), 0.34â1.69], but our study was hampered by some unclassifiable cases. The risks of cancer of the gastric cardia, liver, pancreas, and kidney and non-Hodgkin lymphoma were not significantly increased. Assistants in dry-cleaning shops had a borderline significant excess risk of cervical cancer not found in women directly involved in dry cleaning. We found an excess risk of bladder cancer (RR = 1.44; 95% CI, 1.07â1.93) not associated with length of employment. The finding of no excess risk of esophageal cancer in Nordic dry cleaners differs from U.S. findings. Chance, differences in level of exposure to tetrachloroethylene, and confounding may explain the findings. The overall evidence on bladder cancer in dry cleaners is equivocal
- âŠ