28 research outputs found
The diving response and cardiac vagal activity: A systematic review and meta‐analysis
This article aimed to synthesize the various triggers of the diving response and to perform a meta-analysis assessing their effects on cardiac vagal activity. The protocol was preregistered on PROSPERO (CRD42021231419; 01.07.2021). A systematic and meta-analytic review of cardiac vagal activity was conducted, indexed with the root mean square of successive differences (RMSSD) in the context of the diving response. The search on MEDLINE (via PubMed), Web of Science, ProQuest and PsycNet was finalized on November 6th, 2021. Studies with human participants were considered, measuring RMSSD pre- and during and/or post-exposure to at least one trigger of the diving response. Seventeen papers (n = 311) met inclusion criteria. Triggers examined include face immersion or cooling, SCUBA diving, and total body immersion into water. Compared to resting conditions, a significant moderate to large positive effect was found for RMSSD during exposure (Hedges' g = 0.59, 95% CI 0.36 to 0.82, p < .001), but not post-exposure (g = 0.11, 95% CI −0.14 to 0.36, p = .34). Among the considered moderators, total body immersion had a significantly larger effect than forehead cooling (QM = 23.46, df = 1, p < .001). No further differences were detected. Limitations were the small number of studies included, heterogenous triggers, few participants and low quality of evidence. Further research is needed to investigate the role of cardiac sympathetic activity and of the moderators
Enhanced expression of vacuolar H+-ATPase subunit E in the roots is associated with the adaptation of Broussonetia papyrifera to salt stress.
Vacuolar H(+)-ATPase (V-H(+)-ATPase) may play a pivotal role in maintenance of ion homeostasis inside plant cells. In the present study, the expression of V-H(+)-ATPase genes was analyzed in the roots and leaves of a woody plant, Broussonetia papyrifera, which was stressed with 50, 100 and 150 mM NaCl. Moreover, the expression and distribution of the subunit E protein were investigated by Western blot and immunocytochemistry. These showed that treatment of B. papyrifera with NaCl distinctly changed the hydrolytic activity of V-H(+)-ATPase in the roots and leaves. Salinity induced a dramatic increase in V-H(+)-ATPase hydrolytic activity in the roots. However, only slight changes in V-H(+)-ATPase hydrolytic activity were observed in the leaves. In contrast, increased H(+) pumping activity of V-H(+)-ATPase was observed in both the roots and leaves. In addition, NaCl treatment led to an increase in H(+)-pyrophosphatase (V-H(+)-PPase) activity in the roots. Moreover, NaCl treatment triggered the enhancement of mRNA levels for subunits A, E and c of V-H(+)-ATPase in the roots, whereas only subunit c mRNA was observed to increase in the leaves. By Western blot and immunocytological analysis, subunit E was shown to be augmented in response to salinity stress in the roots. These findings provide evidence that under salt stress, increased V-H(+)-ATPase activity in the roots was positively correlated with higher transcript and protein levels of V-H(+)-ATPase subunit E. Altogether, our results suggest an essential role for V-H(+)-ATPase subunit E in the response of plants to salinity stress