272 research outputs found
Bacterial transcriptional response to labile exometabolites from photosynthetic picoeukaryote Micromonas commoda
Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton
Transcriptional Changes Underlying Elemental Stoichiometry Shifts in a Marine Heterotrophic Bacterium
Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC), a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ∼50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is that bacteria can change the C:N:P ratio of their biomass in response to resource composition. We investigated the physiological mechanisms of resource-driven shifts in biomass stoichiometry in continuous cultures of the marine heterotrophic bacterium Ruegeria pomeroyi (a member of the Roseobacter clade) under four element limitation regimes (C, N, P, and S). Microarray analysis indicated that the bacterium scavenged for alternate sources of the scarce element when cells were C-, N-, or P-limited; reworked the ratios of biomolecules when C- and P- limited; and exerted tighter control over import/export and cytoplasmic pools when N-limited. Under S limitation, a scenario not existing naturally for surface ocean microbes, stress responses dominated transcriptional changes. Resource-driven changes in C:N ratios of up to 2.5-fold and in C:P ratios of up to sixfold were measured in R. pomeroyi biomass. These changes were best explained if the C and P content of the cells was flexible in the face of shifting resources but N content was not, achieved through the net balance of different transcriptional strategies. The cellular-level metabolic trade-offs that govern biomass stoichiometry in R. pomeroyi may have implications for global carbon cycling if extendable to other heterotrophic bacteria. Strong homeostatic responses to N limitation by marine bacteria would intensify competition with autotrophs. Modification of cellular inventories in C- and P-limited heterotrophs would vary the elemental ratio of particulate organic matter sequestered in the deep ocean
Clinical Implications of the General Movement Optimality Score:Beyond the Classes of Rasch Analysis
This article explores the clinical implications of the three different classes drawn from a Rasch analysis of the general movements optimality scores (GMOS) of 383 infants. Parametric analysis of the class membership examines four variables: age of assessment, brain injury presence, general movement patterns, and 2-year-old outcomes. GMOS separated infants with typical (class 3) from atypical development, and further separated cerebral palsy (class 2) from other neurodevelopmental disorders (class 1). Each class is unique regarding its quantitative and qualitative representations on the four variables. The GMOS has strong psychometric properties and provides a quantitative measure of early motor functions. The GMOS can be confidently used to assist with early diagnosis and predict distinct classes of developmental outcomes, grade motor behaviors, and provide a solid base to study individual general movement developmental trajectories
Growth-stage-related shifts in phytoplankton endometabolome composition set the stage for bacterial heterotrophy
Phytoplankton-derived metabolites fuel a large fraction of heterotrophic bacterial production in the global ocean, yet methodological challenges have limited our understanding of the organic molecules transferred between these microbial groups. In an experimental bloom study consisting of three heterotrophic marine bacteria growing together with the diatom Thalassiosira pseudonana, we concurrently measured diatom endometabolites (i.e., potential exometabolite supply) by nuclear magnetic resonance (NMR) spectroscopy and bacterial gene expression (i.e., potential exometabolite uptake) by metatranscriptomic sequencing. Twenty-two diatom endometabolites were annotated, with nine increasing in internal concentration in the late stage of the bloom, eight decreasing, and five showing no variation through the bloom progression. Some metabolite changes could be linked to shifts in diatom gene expression, as well as to shifts in bacterial community composition and their expression of substrate uptake and catabolism genes. Yet an overall low match indicated that endometabolome concentration was not a good predictor of exometabolite availability, and that complex physiological and ecological interactions underlie metabolite exchange. Six diatom endometabolites accumulated to higher concentrations in the bacterial co-cultures compared to axenic cultures, suggesting a bacterial influence on rates of synthesis or release of glutamate, arginine, leucine, 2,3-dihydroxypropane-1-sulfonate, glucose, and glycerol-3-phosphate. Better understanding of phytoplankton metabolite production, release, and transfer to assembled bacterial communities is key to untangling this nearly invisible yet pivotal step in ocean carbon cycling
CAMbase – A XML-based bibliographical database on Complementary and Alternative Medicine (CAM)
The term "Complementary and Alternative Medicine (CAM)" covers a variety of approaches to medical theory and practice, which are not commonly accepted by representatives of conventional medicine. In the past two decades, these approaches have been studied in various areas of medicine. Although there appears to be a growing number of scientific publications on CAM, the complete spectrum of complementary therapies still requires more information about published evidence. A majority of these research publications are still not listed in electronic bibliographical databases such as MEDLINE. However, with a growing demand by patients for such therapies, physicians increasingly need an overview of scientific publications on CAM. Bearing this in mind, CAMbase, a bibliographical database on CAM was launched in order to close this gap. It can be accessed online free of charge or additional costs. The user can peruse more than 80,000 records from over 30 journals and periodicals on CAM, which are stored in CAMbase. A special search engine performing syntactical and semantical analysis of textual phrases allows the user quickly to find relevant bibliographical information on CAM. Between August 2003 and July 2006, 43,299 search queries, an average of 38 search queries per day, were registered focussing on CAM topics such as acupuncture, cancer or general safety aspects. Analysis of the requests led to the conclusion that CAMbase is not only used by scientists and researchers but also by physicians and patients who want to find out more about CAM. Closely related to this effort is our aim to establish a modern library center on Complementary Medicine which offers the complete spectrum of a modern digital library including a document delivery-service for physicians, therapists, scientists and researchers
Planetary Candidates Observed by Kepler V: Planet Sample from Q1-Q12 (36 Months)
The Kepler mission discovered 2842 exoplanet candidates with 2 years of data.
We provide updates to the Kepler planet candidate sample based upon 3 years
(Q1-Q12) of data. Through a series of tests to exclude false-positives,
primarily caused by eclipsing binary stars and instrumental systematics, 855
additional planetary candidates have been discovered, bringing the total number
known to 3697. We provide revised transit parameters and accompanying posterior
distributions based on a Markov Chain Monte Carlo algorithm for the cumulative
catalogue of Kepler Objects of Interest. There are now 130 candidates in the
cumulative catalogue that receive less than twice the flux the Earth receives
and more than 1100 have a radius less than 1.5 Rearth. There are now a dozen
candidates meeting both criteria, roughly doubling the number of candidate
Earth analogs. A majority of planetary candidates have a high probability of
being bonafide planets, however, there are populations of likely
false-positives. We discuss and suggest additional cuts that can be easily
applied to the catalogue to produce a set of planetary candidates with good
fidelity. The full catalogue is publicly available at the NASA Exoplanet
Archive.Comment: Accepted for publication, ApJ
Planetary Candidates Observed by Kepler VI: Planet Sample from Q1-Q16 (47 Months)
\We present the sixth catalog of Kepler candidate planets based on nearly 4
years of high precision photometry. This catalog builds on the legacy of
previous catalogs released by the Kepler project and includes 1493 new Kepler
Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these
candidates have best fit radii <1.5 R_earth. This brings the total number of
KOIs and planet candidates to 7305 and 4173 respectively. We suspect that many
of these new candidates at the low signal-to-noise limit may be false alarms
created by instrumental noise, and discuss our efforts to identify such
objects. We re-evaluate all previously published KOIs with orbital periods of
>50 days to provide a consistently vetted sample that can be used to improve
planet occurrence rate calculations. We discuss the performance of our planet
detection algorithms, and the consistency of our vetting products. The full
catalog is publicly available at the NASA Exoplanet Archive.Comment: 18 pages, to be published in the Astrophysical Journal Supplement
Serie
Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque
Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events
Cryptic carbon and sulfur cycling between surface ocean plankton
Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 112 (2015): 453-457, doi:10.1073/pnas.1413137112
.About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by
marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC)
pool. The chemical complexity of marine DOC, along with a poor understanding of which
compounds form the basis of trophic interactions between bacteria and phytoplankton, have
impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional
patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay
for metabolite exchange between marine plankton. The most highly upregulated genes (up to
374-fold) by a marine Roseobacter clade bacterium when co-cultured with the diatom
Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3-
dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the
marine microbial food web. As the genes for DHPS catabolism have limited distribution among
bacterial taxa, T. pseudonana may use this novel sulfonate for targeted feeding of beneficial
associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an
abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover,
transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by
Roseobacter populations. Other such biogeochemically important metabolites may be common
in the ocean but difficult to discriminate against the complex chemical background of seawater.
Bacterial transformation of this diatom-derived sulfonate represents a new and likely sizeable
link in both the marine carbon and sulfur cycles.This research was partially funded by NSF grants OCE-1356010 to
M.A.M., OCE-1205233 to E.V.A., OCE-0928424 to E.B.K., and OCE-1233964 to S.R.C., and
by the Gordon and Betty Moore Foundation grants 538.01 to M.A.M. and 537.01 to E.V.A.2015-06-2
- …