28 research outputs found

    The structure and properties of ternary zinc phosphate glasses for optical applications

    Get PDF
    This dissertation focuses on the properties and structures of ternary zinc phosphate glasses that have recently been investigated as substrates for femto-second (fs) laser writing. Although these glasses have potential for use as optical substrates, their poor chemical properties limit their applications. In this work, ternary zinc phosphate glasses were studied to find compositions with enhanced chemical durability and the properties and structures of the investigated glasses are reported. Paper 1 and Paper 2 include the first systematic studies of the properties, structures of zinc aluminophosphate (ZAP) glasses and phase relationships in the ZnO-Alā‚‚Oā‚ƒ-Pā‚‚Oā‚… system, respectively. Adding alumina to a Zn-metaphosphate glass reduces dissolution rates in water by 4 orders of magnitude and increases the glass transition temperatures. The average Al coordination number can be predicted from a structural model that considers the number of non-bridging oxygens to coordinate metal cations, and this work is the first reported use of this model for a ternary phosphate glass. Paper 3 is the first systematic study of how the properties and structures of zinc magnesium polyphosphate glasses change when MgO replaces ZnO for compositions with fixed O/P ratios. The MgĀ²āŗ and ZnĀ²āŗ ions have similar field strengths, but have much different effects on glass properties that are discussed in terms of relative polarizabilities (refractivities) and electron configurations of the MgĀ²āŗ and ZnĀ²āŗ ions. In Paper 4, the creation of electronic defects in zinc phosphate glasses by exposure to ultraviolet and x-ray radiation is described. The nature of the defects formed is dependent on the glass composition and similar defects are created when these glasses are exposed to femto-second laser radiation. --Abstract, page iv

    Processing And Characterization Of New Oxy-sulfo-telluride Glasses In The Ge-Sb-Te-S-O System

    Get PDF
    New oxy-sulfo-telluride glasses have been prepared in the GeSbTeSO system employing a two-step melting process which involves the processing of a chalcogenide glass (ChG) and subsequent melting with TeO2 or Sb2O3. The progressive incorporation of O at the expense of S was found to increase the density and the glass transition temperature and to decrease the molar volume of the investigated oxy-sulfo-telluride glasses. We also observed a shift of the visNIR cut-off wavelength to longer wavelength probably due to changes in Sb coordination within the glass matrix and overall matrix polarizability. Using Raman spectroscopy, correlations have been shown between the formation of Ge- and Sb-based oxysulfide structural units and the S/O ratio. Lastly, two glasses with similar composition (Ge20Sb6S64Te3O7) processed by melting the Ge23Sb7S70 glass with TeO2 or the Ge23Sb2S72Te4 glass with Sb2O3 were found to have slightly different physical, thermal, optical and structural properties. These changes are thought to result mainly from the higher moisture content and sensitivity of the TeO2 starting materials as compared to that of the Sb2O3. Ā© 2010 Elsevier Inc. All rights reserved

    Substrate-blind photonic integration based on high-index glass materials

    Get PDF
    Conventional photonic integration technologies are inevitably substrate-dependent, as different substrate platforms stipulate vastly different device fabrication methods and processing compatibility requirements. Here we capitalize on the unique monolithic integration capacity of composition-engineered non-silicate glass materials (amorphous chalcogenides and transition metal oxides) to enable multifunctional, multi-layer photonic integration on virtually any technically important substrate platforms. We show that high-index glass film deposition and device fabrication can be performed at low temperatures ( < 250 Ā°C) without compromising their low loss characteristics, and is thus fully compatible with monolithic integration on a broad range of substrates including semiconductors, plastics, textiles, and metals. Application of the technology is highlighted through three examples: demonstration of high-performance mid-IR photonic sensors on fluoride crystals, direct fabrication of photonic structures on graphene, and 3-D photonic integration on flexible plastic substrates.National Science Foundation (U.S.) (Award 1200406

    Nonlinear Optical Properties Of GeSbS Chalcogenide Waveguides

    Get PDF
    We characterize the nonlinear optical properties of GeSbS chalcogenide glasses with fiber-based experiments. A waveguide nonlinear parameter of 7 W-1/m and nonlinear refractive index of 3.71 x 10-18 m2/W are estimated by self-phase modulation. A GeSbS waveguide could also generate a supercontinuum from 1280 to 2120 nm at the -30 dB level for maximum coupled power of 340 W, showing a 14-fold spectral broadening of the input spectrum explained by cascaded stimulated Raman scattering

    Nonlinear characterization of GeSbS chalcogenide glass waveguides

    Get PDF
    GeSbS ridge waveguides have recently been demonstrated as a promising mid ā€“ infrared platform for integrated waveguide ā€“ based chemical sensing and photodetection. To date, their nonlinear optical properties remain relatively unexplored. In this paper, we characterize the nonlinear optical properties of GeSbS glasses, and show negligible nonlinear losses at 1.55ā€‰Ī¼m. Using self ā€“ phase modulation experiments, we characterize a waveguide nonlinear parameter of 7ā€‰W[subscript āˆ’1]/m and nonlinear refractive index of 3.71ā€‰Ć—ā€‰10[superscript āˆ’18] m[superscript 2]/W. GeSbS waveguides are used to generate supercontinuum from 1280ā€‰nm to 2120ā€‰nm at the āˆ’30 dB level. The spectrum expands along the red shifted side of the spectrum faster than on the blue shifted side, facilitated by cascaded stimulated Raman scattering arising from the large Raman gain of chalcogenides. Fourier transform infrared spectroscopic measurements show that these glasses are optically transparent up to 25ā€‰Ī¼m, making them useful for short ā€“ wave to long ā€“ wave infrared applications in both linear and nonlinear optics.SUTD-MIT International Design Centre (IDC

    Melt Property Variation In GeSe2-As2Se3-PbSe Glass Ceramics For Infrared Gradient Refractive Index (GRIN) Applications

    Get PDF
    Melt size-dependent physical property variation is examined in a multicomponent GeSe2-As2Se3-PbSe chalcogenide glass developed for gradient refractive index applications. The impact of melting conditions on small (40 g) prototype laboratory-scale melts extended to commercially relevant melt sizes (1.325 kg) have been studied and the role of thermal history variation on physical and optical property evolution in parent glass, the glass\u27 crystallization behavior and post heat-treated glass ceramics, is quantified. As-melted glass morphology, optical homogeneity and heat treatment-induced microstructure following a fixed, two-step nucleation and growth protocol exhibit marked variation with melt size. These attributes are shown to impact crystallization behavior (growth rates, resulting crystalline phase formation) and induced effective refractive index change, neff, in the resulting optical nanocomposite. The magnitude of these changes is discussed based on thermal history related melt conditions

    The Properties and Structure of Zinc Magnesium Phosphate Glasses

    Get PDF
    Zn-Mg-phosphate (ZMP) glasses, including those with the nominal molar compositions (50 - x)ZnO xMgO 50P2O5 (0 ā‰„ x ā‰„ 50) and (60 - y)ZnO yMgO 40P2O5(0 ā‰„ y ā‰„ 60), were prepared and properties such as density, refractive index, coefficient of thermal expansion and glass transition temperature (Tg), were measured. The glass transition temperature increases by 100-150 [degree]C and the room temperature dissolution rates in water decrease by 1-2 orders of magnitude when MgO replaces ZnO while maintaining a constant P2O5 content. Glass structures were characterized by Raman spectroscopy and there were no significant changes in the phosphate anion distributions when MgO replaces ZnO. The significant changes in properties cannot be explained by a simple cation field strength argument since Mg2+ and Zn2+ have similar sizes; instead, the effect of 3d electrons on the nature of the bonds between Zn2+ ions and non-bridging oxygens on the phosphate tetrahedra must be considered

    Designing Mid-Wave Infrared (Mwir) Thermo-Optic Coefficient (Dn/Dt) In Chalcogenide Glasses

    No full text
    Seventeen infrared-transmitting GeAsSe chalcogenide glasses were fabricated to determine the role of chemistry and structure on mid-wave infrared (MWIR) optical properties. The refractive index and thermoptic coefficients of samples were measured at Ī» = 4.515 Ī¼m using an IR-modified Metricon prism coupler, located at University of Central Florida. Thermo-optic coefficient (dn/dT) values were shown to range from approximately -40 ppm/Ā°C to +65 ppm/Ā°C, and refractive index was shown to vary between approximately 2.5000 and 2.8000. Trends in refractive index and dn/dT were found to be related to the atomic structures present within the glassy network, as opposed to the atomic percentage of any individual constituent. A linear correlation was found between the quantity (n-3Ā·dn/dT) and the coefficient of thermal expansion (CTE) of the glass, suggesting the ability to compositionally design chalcogenide glass compositions with zero dn/dT, regardless of refractive index or dispersion performance. The tunability of these novel glasses offer increased thermal and mechanical stability as compared to the current commercial zero dn/dT options such as AMTIR-5 from Amorphous Materials Inc. For IR imaging systems designed to achieve passive athermalization, utilizing chalcogenide glasses with their tunable ranges of dn/dT (including zero) can be key to addressing system size, weight, and power (SWaP) limitations

    Refractive Index And Thermo-Optic Coefficients Of Ge-As-Se Chalcogenide Glasses

    No full text
    Seventeen glasses in the Ge-As-Se ternary glass-forming region have been fabricated and analyzed to provide input for optical design data and to establish composition- and structure-based relationships to aide development of novel chalcogenide glasses with tailored optical functionality. While known that Ge addition to binary As-Se glasses enhances the mean coordination number (MCN) of the network and results in increased Tg and decreased CTE, this work highlights the impact on optical properties, specifically mid-wave (Ī» = 4.515 Ī¼m) index and thermo-optic coefficient (dn/dT). Trends in property changes were correlated with an excess or deficiency of chalcogen content in the glassy network as compared to stoichiometric compositions. Transitions in key optical properties were observed with the disappearance of Seā€“Se homopolar bonds and creation of Asā€“As homopolar bonds which are associated with the Se-rich and Se-deficient regions near the stoichiometry, respectively. A second transition was observed with the creation of GeSe ethane-like structures, which are only present in strongly Se-deficient networks. Fitting dn/dT values with a simplified version of the thermal Lorentzā€“Lorenz formulation yielded a linear relation between the quantity (nāˆ’3āˆ™dn/dT) and the CTE, which can be used to predict compositions with the near-zero dn/dT required for athermal optical systems

    Influence Of Phase Separation On Structure-Property Relationships In The (Gese2-3As2Se3)1-XPbseX Glass System

    No full text
    The physical properties of chalcogenide glasses in the (GeSe2-3As2Se3)1-xPbSex [GAP-Se] series (x=0-55 mol%) have been measured as a function of PbSe content and glass morphology. Measurements of density, microhardness, thermal properties (glass transition, stability and conductivity) and IR transmission spectra have been correlated with Pb content illustrating the impact of liquid-liquid phase separation (LLPS) on properties within this multicomponent chalcogenide glass system. The role of Pb as both a modifier and network participant is proposed as a structural interpretation of property variation across the series. Density, microhardness and thermal conductivity showed an increase with PbSe content whereas glass transition temperature (Tg) exhibits a minimum near the center of the immiscibility zone correlated to a decrease in glass stability when a Pb-rich matrix is present. The structural origin of the change in the properties is confirmed using Raman spectroscopy and transmission electron microscopy (TEM) which illustrate the different morphology of phase separation present and how it impacts property evolution
    corecore