5 research outputs found

    Combustion Synthesis of Fe-Incorporated SnO 2

    Get PDF
    Synthesis of nanomaterials within flames has been demonstrated as a highly scalable and versatile approach for obtaining a variety of nanoparticles with respect to their chemistry, composition, size, morphology, and dimensionality. Its applicability can be amplified by exploring new material systems and providing further control over the particle characteristics. This study focused on iron-incorporated SnO2 nanoparticles generated using an inverse coflow diffusion flame burner that supported a near-stoichiometric methane-air combustion. A liquid organometallic precursor solution of Sn(CH3)4 and Fe(CO)5 was used to produce 11–14 nm nanocrystalline particles. Synthesized particles were analyzed using TEM, XRD, and XEDS to characterize for size and composition. A flame temperature field was obtained to map particle evolution within the flame. A range of conditions and parameters were studied to specifically generate targeted particles. The study augments related research towards increasing the production potential of combustion synthesis

    The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance

    No full text
    This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 ºC for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 – 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 ºC, low standard deviation to the sensor response (±0.35) and no signal hysteresis

    The Effects of the Location of Au Additives on Combustion-generated SnO2 Nanopowders for CO Gas Sensing

    Get PDF
    The current work presents the results of an experimental study of the effects of the location of gold additives on the performance of combustion-generated tin dioxide (SnO2) nanopowders in solid state gas sensors. The time response and sensor response to 500 ppm carbon monoxide is reported for a range of gold additive/SnO2 film architectures including the use of colloidal, sputtered, and combustion-generated Au additives. The opportunities afforded by combustion synthesis to affect the SnO2/additive morphology are demonstrated. The best sensor performance in terms of sensor response (S) and time response (t) was observed when the Au additives were restricted to the outermost layer of the gas-sensing film. Further improvement was observed in the sensor response and time response when the Au additives were dispersed throughout the outermost layer of the film, where S = 11.3 and t = 51 s, as opposed to Au localized at the surface, where S = 6.1 and t = 60 s

    Catalysis of Methanol-Air Mixture Using Platinum Nanoparticles for Microscale Combustion

    Get PDF
    High surface area, active catalysts containing dispersed catalytic platinum nanoparticles (dp∼11.6 nm) on a cordierite substrate were fabricated and characterized using TEM, XRD, and SEM. The catalyst activity was evaluated for methanol oxidation. Experimental results were obtained in a miniature-scale continuous flow reactor. Subsequent studies on the effect of catalyst loading and reactor flow parameters are reported. Repeat tests were performed to assess the stability of the catalyst and the extent of deactivation, if any, that occurred due to restructuring and sintering of the particles. SEM characterization studies performed on the postreaction catalysts following repeat tests at reasonably high operating temperatures (∼500°C corresponding to ∼0.3Tm for bulk platinum) showed evidence of sintering, yet the associated loss of surface area had minimal effect on the overall catalyst activity, as determined from bulk temperature measurements. The potential application of this work for improving catalytic devices including microscale reactors is also briefly discussed

    A Study of Fuel and Reactor Design for Platinum Nanoparticle Catalyzed Microreactors

    Get PDF
    Typical microcombustion-based power devices entail the use of catalyst to sustain combustion in less than millimeter scale channels. This work explores the use of several other candidate fuels for ~8 nm diameter Pt particle catalyzed combustion within 800 μm channel width cordierite substrates. The results demonstrate while commercial hydrocarbon fuels such as methane, propane, butane, and ethanol can be used to sustain catalytic combustion, room temperature ignition was only observed using methanol-air mixtures. Fuels, other than methanol, required preheating at temperatures >200°C, yet repeated catalytic cycling similar to methanol-air mixtures was demonstrated. Subsequently, a new reactor design was investigated to couple with thermoelectric generators. The modified reactor design enabled ignition of methanol-air mixtures at room temperature with the ability to achieve repeat catalytic cycles. Preliminary performance studies achieved a maximum temperature difference ΔT of 55°C with a flow rate of 800 mL/min. While the temperature difference indicates a respectable potential for power generation, reduced exhaust temperature and improved thermal management could significantly enhance the eventual device performance
    corecore