59 research outputs found

    The diagnostic accuracy of lung ultrasound to determine PiCCO-derived extravascular lung water in invasively ventilated patients with COVID-19 ARDS

    Get PDF
    Background: Lung ultrasound (LUS) can detect pulmonary edema and it is under consideration to be added to updated acute respiratory distress syndrome (ARDS) criteria. However, it remains uncertain whether different LUS scores can be used to quantify pulmonary edema in patient with ARDS. Objectives: This study examined the diagnostic accuracy of four LUS scores with the extravascular lung water index (EVLWi) assessed by transpulmonary thermodilution in patients with moderate-to-severe COVID-19 ARDS. Methods: In this predefined secondary analysis of a multicenter randomized-controlled trial (InventCOVID), patients were enrolled within 48 hours after intubation and underwent LUS and EVLWi measurement on the first and fourth day after enrolment. EVLWi and ∆EVLWi were used as reference standards. Two 12-region scores (global LUS and LUS–ARDS), an 8-region anterior–lateral score and a 4-region B-line score were used as index tests. Pearson correlation was performed and the area under the receiver operating characteristics curve (AUROCC) for severe pulmonary edema (EVLWi &gt; 15 mL/kg) was calculated. Results: 26 out of 30 patients (87%) had complete LUS and EVLWi measurements at time point 1 and 24 out of 29 patients (83%) at time point 2. The global LUS (r = 0.54), LUS–ARDS (r = 0.58) and anterior–lateral score (r = 0.54) correlated significantly with EVLWi, while the B-line score did not (r = 0.32). ∆global LUS (r = 0.49) and ∆anterior–lateral LUS (r = 0.52) correlated significantly with ∆EVLWi. AUROCC for EVLWi &gt; 15 ml/kg was 0.73 for the global LUS, 0.79 for the anterior–lateral and 0.85 for the LUS–ARDS score. Conclusions: Overall, LUS demonstrated an acceptable diagnostic accuracy for detection of pulmonary edema in moderate–to–severe COVID-19 ARDS when compared with PICCO. For identifying patients at risk of severe pulmonary edema, an extended score considering pleural morphology may be of added value. Trial registration: ClinicalTrials.gov identifier NCT04794088, registered on 11 March 2021. European Clinical Trials Database number 2020–005447-23.</p

    Slicing and dicing ARDS: we almost forgot the lungs

    No full text

    Slicing and dicing ARDS: we almost forgot the lungs

    No full text

    Latent class analysis of imaging and clinical respiratory parameters from patients with COVID-19-related ARDS identifies recruitment subphenotypes

    Get PDF
    Background: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) require respiratory support with invasive mechanical ventilation and show varying responses to recruitment manoeuvres. In patients with ARDS not related to COVID-19, two pulmonary subphenotypes that differed in recruitability were identified using latent class analysis (LCA) of imaging and clinical respiratory parameters. We aimed to evaluate if similar subphenotypes are present in patients with COVID-19-related ARDS. Methods: This is the retrospective analysis of mechanically ventilated patients with COVID-19-related ARDS who underwent CT scans at positive end-expiratory pressure of 10 cmH2O and after a recruitment manoeuvre at 20 cmH2O. LCA was applied to quantitative CT-derived parameters, clinical respiratory parameters, blood gas analysis and routine laboratory values before recruitment to identify subphenotypes. Results: 99 patients were included. Using 12 variables, a two-class LCA model was identified as best fitting. Subphenotype 2 (recruitable) was characterized by a lower PaO2/FiO2, lower normally aerated lung volume and lower compliance as opposed to a higher non-aerated lung mass and higher mechanical power when compared to subphenotype 1 (non-recruitable). Patients with subphenotype 2 had more decrease in non-aerated lung mass in response to a standardized recruitment manoeuvre (p = 0.024) and were mechanically ventilated longer until successful extubation (adjusted SHR 0.46, 95% CI 0.23–0.91, p = 0.026), while no difference in survival was found (p = 0.814). Conclusions: A recruitable and non-recruitable subphenotype were identified in patients with COVID-19-related ARDS. These findings are in line with previous studies in non-COVID-19-related ARDS and suggest that a combination of imaging and clinical respiratory parameters could facilitate the identification of recruitable lungs before the manoeuvre

    Assessing Extravascular Lung Water in Critically Ill Patients Using Lung Ultrasound: A Systematic Review on Methodological Aspects in Diagnostic Accuracy Studies

    No full text
    Lung ultrasound (LUS) is a non-invasive bedside method used to quantify extravascular lung water (EVLW). To evaluate the methodology and diagnostic accuracy of LUS in studies assessing EVLW in intensive care unit patients, PubMed and Embase were searched for studies comparing LUS with imaging modalities. In 14 relevant studies a wide variety of equipment used and training of examiners were noted. Four scoring systems were reported: (i) a binary score (the presence of three or more B-lines); (ii) a categorical score; (iii) a numerical score; (iv) a quantitative LUS score using software. The diagnostic accuracy of LUS varied: sensitivity ranged from 50%–98%, specificity from 76%–100% and r² from 0.20–0.91. Methodology and diagnostic accuracy varies substantially in published reports. Further research is needed to correlate methodological factors with diagnostic accuracy. Hospitals should standardize LUS methodology. Consensus is needed to harmonize LUS methodology for lung water assessment

    Assessing Extravascular Lung Water in Critically Ill Patients Using Lung Ultrasound: A Systematic Review on Methodological Aspects in Diagnostic Accuracy Studies

    No full text
    Lung ultrasound (LUS) is a non-invasive bedside method used to quantify extravascular lung water (EVLW). To evaluate the methodology and diagnostic accuracy of LUS in studies assessing EVLW in intensive care unit patients, PubMed and Embase were searched for studies comparing LUS with imaging modalities. In 14 relevant studies a wide variety of equipment used and training of examiners were noted. Four scoring systems were reported: (i) a binary score (the presence of three or more B-lines); (ii) a categorical score; (iii) a numerical score; (iv) a quantitative LUS score using software. The diagnostic accuracy of LUS varied: sensitivity ranged from 50%–98%, specificity from 76%–100% and r² from 0.20–0.91. Methodology and diagnostic accuracy varies substantially in published reports. Further research is needed to correlate methodological factors with diagnostic accuracy. Hospitals should standardize LUS methodology. Consensus is needed to harmonize LUS methodology for lung water assessment

    Prone Positioning Decreases Inhomogeneity and Improves Dorsal Compliance in Invasively Ventilated Spontaneously Breathing COVID-19 Patients—A Study Using Electrical Impedance Tomography

    No full text
    Background: We studied prone positioning effects on lung aeration in spontaneously breathing invasively ventilated patients with coronavirus disease 2019 (COVID-19). Methods: changes in lung aeration were studied prospectively by electrical impedance tomography (EIT) from before to after placing the patient prone, and back to supine. Mixed effect models with a random intercept and only fixed effects were used to evaluate changes in lung aeration. Results: fifteen spontaneously breathing invasively ventilated patients were enrolled, and remained prone for a median of 19 [17 to 21] hours. At 16 h the global inhomogeneity index was lower. At 2 h, there were neither changes in dorsal nor in ventral compliance; after 16 h, only dorsal compliance (βFe +18.9 [95% Confidence interval (CI): 9.1 to 28.8]) and dorsal end-expiratory lung impedance (EELI) were increased (βFe, +252 [95% CI: 13 to 496]); at 2 and 16 h, dorsal silent spaces was unchanged (βFe, –4.6 [95% CI: –12.3 to +3.2]). The observed changes induced by prone positioning disappeared after turning patients back to supine. Conclusions: in this cohort of spontaneously breathing invasively ventilated COVID-19 patients, prone positioning decreased inhomogeneity, increased lung volumes, and improved dorsal compliance

    Prone Positioning Decreases Inhomogeneity and Improves Dorsal Compliance in Invasively Ventilated Spontaneously Breathing COVID-19 Patients—A Study Using Electrical Impedance Tomography

    No full text
    Background: We studied prone positioning effects on lung aeration in spontaneously breathing invasively ventilated patients with coronavirus disease 2019 (COVID-19). Methods: changes in lung aeration were studied prospectively by electrical impedance tomography (EIT) from before to after placing the patient prone, and back to supine. Mixed effect models with a random intercept and only fixed effects were used to evaluate changes in lung aeration. Results: fifteen spontaneously breathing invasively ventilated patients were enrolled, and remained prone for a median of 19 [17 to 21] hours. At 16 h the global inhomogeneity index was lower. At 2 h, there were neither changes in dorsal nor in ventral compliance; after 16 h, only dorsal compliance (βFe +18.9 [95% Confidence interval (CI): 9.1 to 28.8]) and dorsal end-expiratory lung impedance (EELI) were increased (βFe, +252 [95% CI: 13 to 496]); at 2 and 16 h, dorsal silent spaces was unchanged (βFe, –4.6 [95% CI: –12.3 to +3.2]). The observed changes induced by prone positioning disappeared after turning patients back to supine. Conclusions: in this cohort of spontaneously breathing invasively ventilated COVID-19 patients, prone positioning decreased inhomogeneity, increased lung volumes, and improved dorsal compliance

    Assessment of the Effect of Recruitment Maneuver on Lung Aeration Through Imaging Analysis in Invasively Ventilated Patients: A Systematic Review

    No full text
    Background: Recruitment maneuvers (RMs) have heterogeneous effects on lung aeration and have adverse side effects. We aimed to identify morphological, anatomical, and functional imaging characteristics that might be used to predict the RMs on lung aeration in invasively ventilated patients. Methods: We performed a systemic review. Studies included invasively ventilated patients who received an RM and in whom re-aeration was examined with chest computed tomography (CT), electrical impedance tomography (EIT), and lung ultrasound (LUS) were included. Results: Twenty studies were identified. Different types of RMs were applied. The amount of re-aerated lung tissue after an RM was highly variable between patients in all studies, irrespective of the used imaging technique and the type of patients (ARDS or non-ARDS). Imaging findings suggesting a non-focal morphology (i.e., radiologic findings consistent with attenuations with diffuse or patchy loss of aeration) were associated with higher likelihood of recruitment and lower chance of overdistention than a focal morphology (i.e., radiological findings suggestive of lobar or segmental loss of aeration). This was independent of the used imaging technique but only observed in patients with ARDS. In patients without ARDS, the results were inconclusive. Conclusions: ARDS patients with imaging findings suggestive of non-focal morphology show most re-aeration of previously consolidated lung tissue after RMs. The role of imaging techniques in predicting the effect of RMs on re-aeration in patients without ARDS remains uncertain
    • …
    corecore