707 research outputs found
Dimension of the Torelli group for Out(F_n)
Let T_n be the kernel of the natural map from Out(F_n) to GL(n,Z). We use
combinatorial Morse theory to prove that T_n has an Eilenberg-MacLane space
which is (2n-4)-dimensional and that H_{2n-4}(T_n,Z) is not finitely generated
(n at least 3). In particular, this recovers the result of Krstic-McCool that
T_3 is not finitely presented. We also give a new proof of the fact, due to
Magnus, that T_n is finitely generated.Comment: 27 pages, 9 figure
Polynomial diffeomorphisms of C^2, IV: The measure of maximal entropy and laminar currents
This paper concerns the dynamics of polynomial automorphisms of .
One can associate to such an automorphism two currents and the
equilibrium measure . In this paper we study some
geometric and dynamical properties of these objects. First, we characterize
as the unique measure of maximal entropy. Then we show that the measure
has a local product structure and that the currents have a
laminar structure. This allows us to deduce information about periodic points
and heteroclinic intersections. For example, we prove that the support of
coincides with the closure of the set of saddle points. The methods used
combine the pluripotential theory with the theory of non-uniformly hyperbolic
dynamical systems
Initial determination of the spins of the gluino and squarks at LHC
In principle particle spins can be measured from their production cross
sections once their mass is approximately known. The method works in practice
because spins are quantized and cross sections depend strongly on spins. It can
be used to determine, for example, the spin of the top quark. Direct
application of this method to supersymmetric theories will have to overcome the
challenge of measuring mass at the LHC, which could require high statistics. In
this article, we propose a method of measuring the spins of the colored
superpatners by combining rate information for several channels and a set of
kinematical variables, without directly measuring their masses. We argue that
such a method could lead to an early determination of the spin of gluino and
squarks. This method can be applied to the measurement of spin of other new
physics particles and more general scenarios.Comment: 23 pages, 8 figures, minor change
SUSY parameter determination at the LHC using cross sections and kinematic edges
We study the determination of supersymmetric parameters at the LHC from a
global fit including cross sections and edges of kinematic distributions. For
illustration, we focus on a minimal supergravity scenario and discuss how well
it can be constrained at the LHC operating at 7 and 14 TeV collision energy,
respectively. We find that the inclusion of cross sections greatly improves the
accuracy of the SUSY parameter determination, and allows to reliably extract
model parameters even in the initial phase of LHC data taking with 7 TeV
collision energy and 1/fb integrated luminosity. Moreover, cross section
information may be essential to study more general scenarios, such as those
with non-universal gaugino masses, and distinguish them from minimal,
universal, models.Comment: 22 pages, 8 figure
Spin Analysis of Supersymmetric Particles
The spin of supersymmetric particles can be determined at colliders
unambiguously. This is demonstrated for a characteristic set of non-colored
supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The
analysis is based on the threshold behavior of the excitation curves for pair
production in collisions, the angular distribution in the production
process and decay angular distributions. In the first step we present the
observables in the helicity formalism for the supersymmetric particles.
Subsequently we confront the results with corresponding analyses of
Kaluza-Klein particles in theories of universal extra space dimensions which
behave distinctly different from supersymmetric theories. It is shown in the
third step that a set of observables can be designed which signal the spin of
supersymmetric particles unambiguously without any model assumptions. Finally
in the fourth step it is demonstrated that the determination of the spin of
supersymmetric particles can be performed experimentally in practice at an
collider.Comment: 39 pages, 14 figure
Measuring Invisible Particle Masses Using a Single Short Decay Chain
We consider the mass measurement at hadron colliders for a decay chain of two
steps, which ends with a missing particle. Such a topology appears as a
subprocess of signal events of many new physics models which contain a dark
matter candidate. From the two visible particles coming from the decay chain,
only one invariant mass combination can be formed and hence it is na\"ively
expected that the masses of the three invisible particles in the decay chain
cannot be determined from a single end point of the invariant mass
distribution. We show that the event distribution in the
vs. invariant mass-squared plane, where , are the transverse
energies of the two visible particles, contains the information of all three
invisible particle masses and allows them to be extracted individually. The
experimental smearing and combinatorial issues pose challenges to the mass
measurements. However, in many cases the three invisible particle masses in the
decay chain can be determined with reasonable accuracies.Comment: 45 pages, 32 figure
A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations
The purpose of this paper is to enhance a correspondence between the dynamics
of the differential equations on and those
of the parabolic equations on a bounded
domain . We give details on the similarities of these dynamics in the
cases , and and in the corresponding cases ,
and dim() respectively. In addition to
the beauty of such a correspondence, this could serve as a guideline for future
research on the dynamics of parabolic equations
Dark Matter Candidates: A Ten-Point Test
An extraordinarily rich zoo of non-baryonic Dark Matter candidates has been
proposed over the last three decades. Here we present a 10-point test that a
new particle has to pass, in order to be considered a viable DM candidate: I.)
Does it match the appropriate relic density? II.) Is it {\it cold}? III.) Is it
neutral? IV.) Is it consistent with BBN? V.) Does it leave stellar evolution
unchanged? VI.) Is it compatible with constraints on self-interactions? VII.)
Is it consistent with {\it direct} DM searches? VIII.) Is it compatible with
gamma-ray constraints? IX.) Is it compatible with other astrophysical bounds?
X.) Can it be probed experimentally?Comment: 29 pages, 12 figure
Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report
This Report summarizes the proceedings of the 2013 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for
calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections
and (2) the comparison of those cross sections with LHC data from Run 1, and
projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les
Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200
page
- …