2 research outputs found

    Large-scale manufacturing of base-edited chimeric antigen receptor T cells

    Get PDF
    Base editing is a revolutionary gene-editing technique enabling the introduction of point mutations into the genome without generating detrimental DNA double-stranded breaks. Base-editing enzymes are commonly delivered in the form of modified linear messenger RNA (mRNA) that is costly to produce. Here, we address this problem by developing a simple protocol for manufacturing base-edited cells using circular RNA (circRNA), which is less expensive to synthesize. Compared with linear mRNA, higher editing efficiencies were achieved with circRNA, enabling an 8-fold reduction in the amount of RNA required. We used this protocol to manufacture a clinical dose (1 × 108 cells) of base-edited chimeric antigen receptor (CAR) T cells lacking expression of the inhibitory receptor, PD-1. Editing efficiencies of up to 86% were obtained using 0.25 μg circRNA/1 × 106 cells. Increased editing efficiencies with circRNA were attributed to more efficient translation. These results suggest that circRNA, which is less expensive to produce than linear mRNA, is a viable option for reducing the cost of manufacturing base-edited cells at scale

    A compact and simple method of achieving differential transgene expression by exploiting translational readthrough

    Get PDF
    The development of multicistronic vectors enabling differential transgene expression is a goal of gene therapy and poses a significant engineering challenge. Current approaches rely on the insertion of long regulatory sequences that occupy valuable space in vectors, which have a finite and limited packaging capacity. Here we describe a simple method of achieving differential transgene expression by inserting stop codons and translational readthrough motifs (TRMs) to suppress stop codon termination. TRMs reduced downstream transgene expression ∼sixfold to ∼140-fold, depending on the combination of stop codon and TRM used. We show that a TRM can facilitate the controlled secretion of the highly potent cytokine IL-12 at therapeutically beneficial levels in an aggressive immunocompetent mouse melanoma model to prevent tumor growth. Given their compact size (6 bp) and ease of introduction, we envisage that TRMs will be widely adopted in recombinant DNA engineering to facilitate differential transgene expression
    corecore