27 research outputs found

    High-Performance 3D Compressive Sensing MRI Reconstruction Using Many-Core Architectures

    Get PDF
    Compressive sensing (CS) describes how sparse signals can be accurately reconstructed from many fewer samples than required by the Nyquist criterion. Since MRI scan duration is proportional to the number of acquired samples, CS has been gaining significant attention in MRI. However, the computationally intensive nature of CS reconstructions has precluded their use in routine clinical practice. In this work, we investigate how different throughput-oriented architectures can benefit one CS algorithm and what levels of acceleration are feasible on different modern platforms. We demonstrate that a CUDA-based code running on an NVIDIA Tesla C2050 GPU can reconstruct a 256 × 160 × 80 volume from an 8-channel acquisition in 19 seconds, which is in itself a significant improvement over the state of the art. We then show that Intel's Knights Ferry can perform the same 3D MRI reconstruction in only 12 seconds, bringing CS methods even closer to clinical viability

    Lattice QCD with Domain Decomposition on Intel Xeon Phi Co-Processors

    Full text link
    The gap between the cost of moving data and the cost of computing continues to grow, making it ever harder to design iterative solvers on extreme-scale architectures. This problem can be alleviated by alternative algorithms that reduce the amount of data movement. We investigate this in the context of Lattice Quantum Chromodynamics and implement such an alternative solver algorithm, based on domain decomposition, on Intel Xeon Phi co-processor (KNC) clusters. We demonstrate close-to-linear on-chip scaling to all 60 cores of the KNC. With a mix of single- and half-precision the domain-decomposition method sustains 400-500 Gflop/s per chip. Compared to an optimized KNC implementation of a standard solver [1], our full multi-node domain-decomposition solver strong-scales to more nodes and reduces the time-to-solution by a factor of 5.Comment: 12 pages, 7 figures, presented at Supercomputing 2014, November 16-21, 2014, New Orleans, Louisiana, USA, speaker Simon Heybrock; SC '14 Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 69-80, IEEE Press Piscataway, NJ, USA (c)201

    Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models

    Full text link
    Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed solution for high-performance distributed training of large-scale DLRMs. We introduce a high-performance scalable software stack based on PyTorch and pair it with the new evolution of Zion platform, namely ZionEX. We demonstrate the capability to train very large DLRMs with up to 12 Trillion parameters and show that we can attain 40X speedup in terms of time to solution over previous systems. We achieve this by (i) designing the ZionEX platform with dedicated scale-out network, provisioned with high bandwidth, optimal topology and efficient transport (ii) implementing an optimized PyTorch-based training stack supporting both model and data parallelism (iii) developing sharding algorithms capable of hierarchical partitioning of the embedding tables along row, column dimensions and load balancing them across multiple workers; (iv) adding high-performance core operators while retaining flexibility to support optimizers with fully deterministic updates (v) leveraging reduced precision communications, multi-level memory hierarchy (HBM+DDR+SSD) and pipelining. Furthermore, we develop and briefly comment on distributed data ingestion and other supporting services that are required for the robust and efficient end-to-end training in production environments
    corecore