1,148 research outputs found

    Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors.

    Get PDF
    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3(S408A,S409A)γ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3(S408A,S409A)δ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4(S443A)β3(S408A,S409A)δ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3(S408,S409) implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by two endogenous neuromodulators

    Protein kinase C regulates tonic GABAA receptor-mediated inhibition in the hippocampus and thalamus.

    Get PDF
    Tonic inhibition mediated by extrasynaptic GABAA receptors (GABAA Rs) is an important regulator of neuronal excitability. Phosphorylation by protein kinase C (PKC) provides a key mode of regulation for synaptic GABAA Rs underlying phasic inhibition; however, less attention has been focused on the plasticity of tonic inhibition and whether this can also be modulated by receptor phosphorylation. To address this issue, we used whole-cell patch clamp recording in acute murine brain slices at both room and physiological temperatures to examine the effects of PKC-mediated phosphorylation on tonic inhibition. Recordings from dentate gyrus granule cells in the hippocampus and dorsal lateral geniculate relay neurons in the thalamus demonstrated that PKC activation caused downregulation of tonic GABAA R-mediated inhibition. Conversely, inhibition of PKC resulted in an increase in tonic GABAA R activity. These findings were corroborated by experiments on human embryonic kidney 293 cells expressing recombinant α4β2δ GABAA Rs, which represent a key extrasynaptic GABAA R isoform in the hippocampus and thalamus. Using bath application of low GABA concentrations to mimic activation by ambient neurotransmitter, we demonstrated a similar inhibition of receptor function following PKC activation at physiological temperature. Live cell imaging revealed that this was correlated with a loss of cell surface GABAA Rs. The inhibitory effects of PKC activation on α4β2δ GABAA R activity appeared to be mediated by direct phosphorylation at a previously identified site on the β2 subunit, serine 410. These results indicate that PKC-mediated phosphorylation can be an important physiological regulator of tonic GABAA R-mediated inhibition

    A half century of γ-aminobutyric acid

    Get PDF
    γ-aminobutyric acid has become one of the most widely known neurotransmitter molecules in the brain over the last 50 years, recognised for its pivotal role in inhibiting neural excitability. It emerged from studies of crustacean muscle and neurons before its significance to the mammalian nervous system was appreciated. Now, after five decades of investigation, we know that most neurons are γ-aminobutyric-acid-sensitive, it is a cornerstone of neural physiology and dysfunction to γ-aminobutyric acid signalling is increasingly documented in a range of neurological diseases. In this review, we briefly chart the neurodevelopment of γ-aminobutyric acid and its two major receptor subtypes: the γ-aminobutyric acidA and γ-aminobutyric acidB receptors, starting from the humble invertebrate origins of being an 'interesting molecule' acting at a single γ-aminobutyric acid receptor type, to one of the brain's most important neurochemical components and vital drug targets for major therapeutic classes of drugs. We document the period of molecular cloning and the explosive influence this had on the field of neuroscience and pharmacology up to the present day and the production of atomic γ-aminobutyric acidA and γ-aminobutyric acidB receptor structures. γ-Aminobutyric acid is no longer a humble molecule but the instigator of rich and powerful signalling processes that are absolutely vital for healthy brain function

    Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels

    Get PDF
    Important modulatory roles have been attributed to presynaptic NMDA receptors (NMDARs) located on cerebellar interneuron terminals. Evidence supporting a presynaptic location includes an increase in the frequency of mini events following the application of NMDA and gold particle-labelled NMDA receptor antibody localisation. However, more recent work, using calcium indicators, casts doubt on the idea of presynaptic NMDARs because basket cell varicosities did not show the expected calcium rise following either the local iontophoresis of L-aspartate or the two-photon uncaging of glutamate. (In theory such calcium imaging is sensitive enough to detect the calcium rise from even a single activated receptor.) It has therefore been suggested that the effects of NMDA are mediated via the activation of somatodendritic channels, which subsequently cause a subthreshold depolarization of the axon. Here we report results from a vibrodissociated preparation of cerebellar Purkinje cells, in which the interneuron cell bodies are no longer connected but many of their terminal varicosities remain attached and functional. This preparation can retain both inhibitory and excitatory inputs. We find that the application of NMDA increases the frequency of both types of synaptic event. The characteristics of these events suggest they can originate from interneuron, parallel fiber and even climbing fiber terminals. Interestingly, retrograde signalling seems to activate only the inhibitory terminals. Finally, antibody staining of these cells shows NMDAR-like immunoreactivity co-localised with synaptic markers. Since the Purkinje cells show no evidence of postsynaptic NMDAR-mediated currents, we conclude that functional NMDA receptors are located on presynaptic terminals

    Stoichiometry of δ subunit containing GABAA receptors.

    Get PDF
    Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach

    Pharmacological characterisation of murine α4β1δ GABAA receptors expressed in Xenopus oocytes

    Get PDF
    BACKGROUND: GABAA receptor subunit composition has a profound effect on the receptor's physiological and pharmacological properties. The receptor β subunit is widely recognised for its importance in receptor assembly, trafficking and post-translational modifications, but its influence on extrasynaptic GABAA receptor function is less well understood. Here, we examine the pharmacological properties of a potentially native extrasynaptic GABAA receptor that incorporates the β1 subunit, specifically composed of α4β1δ and α4β1 subunits. RESULTS: GABA activated concentration-dependent responses at α4β1δ and α4β1 receptors with EC50 values in the nanomolar to micromolar range, respectively. The divalent cations Zn(2+) and Cu(2+), and the β1-selective inhibitor salicylidine salicylhydrazide (SCS), inhibited GABA-activated currents at α4β1δ receptors. Surprisingly the α4β1 receptor demonstrated biphasic sensitivity to Zn(2+) inhibition that may reflect variable subunit stoichiometries with differing sensitivity to Zn(2+). The neurosteroid tetrahydro-deoxycorticosterone (THDOC) significantly increased GABA-initiated responses in concentrations above 30 nM for α4β1δ receptors. CONCLUSIONS: With this study we report the first pharmacological characterisation of various GABAA receptor ligands acting at murine α4β1δ GABAA receptors, thereby improving our understanding of the molecular pharmacology of this receptor isoform. This study highlights some notable differences in the pharmacology of murine and human α4β1δ receptors. We consider the likelihood that the α4β1δ receptor may play a role as an extrasynaptic GABAA receptor in the nervous system

    Glycine receptors in GtoPdb v.2021.3

    Get PDF
    The inhibitory glycine receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on Glycine Receptors) is a member of the Cys-loop superfamily of transmitter-gated ion channels that includes the zinc activated channels, GABA_{A}, nicotinic acetylcholine and 5-HT_{3} receptors and Zn2^{+}_{-} activated channels. The receptor is expressed either as a homo-pentamer of α subunits, or a complex now thought to harbour 2α and 3β subunits [33, 7], that contain an intrinsic anion channel. Four differentially expressed isoforms of the α-subunit (α1-α4) and one variant of the β-subunit (β1, GLRB, P48167) have been identified by genomic and cDNA cloning. Further diversity originates from alternative splicing of the primary gene transcripts for α1 (α1^{INS} and α1^{del} ), α2 (α2A and α2B), α3 (α3S and α3L) and β (βΔ7) subunits and by mRNA editing of the α2 and α3 subunit [83, 93, 21]. Both α2 splicing and α3 mRNA editing can produce subunits (i.e., α2B and α3P185L) with enhanced agonist sensitivity. Predominantly, the adult form of the receptor contains α1 (or α3) and β subunits whereas the immature form is mostly composed of only α2 subunits. The &a;pha;4 subunit is a pseudogene in humans. High resolution molecular structures are available for the α1 and α3 homomeric receptors [50, 20]. As in other Cys-loop receptors, the orthosteric binding site for agonists and the competitive antagonist strychnine is formed at the interfaces between the subunits’ extracellular domains. Inclusion of the β-subunit in the pentameric glycine receptor contributes to agonist binding, reduces single channel conductance and alters pharmacology. The β-subunit also anchors the receptor, via an amphipathic sequence within the large intracellular loop region, to gephyrin. This a cytoskeletal attachment protein that binds to a number of subsynaptic proteins involved in cytoskeletal structure and thus clusters and anchors hetero-oligomeric receptors to the synapse [56, 54, 88]. G protein βγ subunits enhance the open state probability of native and recombinant glycine receptors by association with domains within the large intracellular loop [124, 123]. Intracellular chloride concentration modulates the kinetics of native and recombinant glycine receptors [96]. Intracellular Ca^{2+} appears to increase native and recombinant glycine receptor affinity, prolonging channel open events, by a mechanism that does not involve phosphorylation [27]. Extracellular Zn^{2+} potentiates GlyR function at nanomolar concentrations [86]. and causes inhibition at higher micromolar concentrations (17)

    Glycine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The inhibitory glycine receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on Glycine Receptors) is a member of the Cys-loop superfamily of transmitter-gated ion channels that includes the zinc activated channels, GABAA, nicotinic acetylcholine and 5-HT3 receptors [63]. The receptor is expressed either as a homo-pentamer of α subunits, or a complex now thought to harbour 2α and 3β subunits [30, 7], that contain an intrinsic anion channel. Four differentially expressed isoforms of the α-subunit (α1-α4) and one variant of the β-subunit (β1, GLRB, P48167) have been identified by genomic and cDNA cloning. Further diversity originates from alternative splicing of the primary gene transcripts for α1 (α1INS and α1del), α2 (α2A and α2B), α3 (α3S and α3L) and β (βΔ7) subunits and by mRNA editing of the α2 and α3 subunit [80, 91, 18]. Both α2 splicing and α3 mRNA editing can produce subunits (i.e., α2B and α3P185L) with enhanced agonist sensitivity. Predominantly, the mature form of the receptor contains α1 (or α3) and β subunits while the immature form is mostly composed of only α2 subunits. RNA transcripts encoding the α4-subunit have not been detected in adult humans. The N-terminal domain of the α-subunit contains both the agonist and strychnine binding sites that consist of several discontinuous regions of amino acids. Inclusion of the β-subunit in the pentameric glycine receptor contributes to agonist binding, reduces single channel conductance and alters pharmacology. The β-subunit also anchors the receptor, via an amphipathic sequence within the large intracellular loop region, to gephyrin. The latter is a cytoskeletal attachment protein that binds to a number of subsynaptic proteins involved in cytoskeletal structure and thus clusters and anchors hetero-oligomeric receptors to the synapse [86, 51, 53]. G-protein βγ subunits enhance the open state probability of native and recombinant glycine receptors by association with domains within the large intracellular loop [122, 121]. Intracellular chloride concentration modulates the kinetics of native and recombinant glycine receptors [94]. Intracellular Ca2+ appears to increase native and recombinant glycine receptor affinity, prolonging channel open events, by a mechanism that does not involve phosphorylation [24]

    Probing GABAA receptors with inhibitory neurosteroids

    Get PDF
    γ-aminobutyric acid type A receptors (GABAARs) are important components of the central nervous system and they are functionally tasked with controlling neuronal excitability. These receptors are subject to post-translational modification and also to modulation by endogenous regulators, such as the neurosteroids. These modulators can either potentiate or inhibit GABAAR function. Whilst the former class of neurosteroids are considered to bind to and act from the transmembrane domain of the receptor, the domains that are important for the inhibitory neurosteroids remain less clear. In this study, we systematically compare a panel of recombinant synaptic-type and extrasynaptic-type GABAARs expressed in heterologous cell systems for their sensitivity to inhibition by the classic inhibitory neurosteroid, pregnenolone sulphate. Generally, peak GABA current responses were inhibited less compared to steady-state currents, implicating the desensitised state in inhibition. Moreover, pregnenolone sulphate inhibition increased with GABA concentration, but showed minimal voltage dependence. There was no strong dependence of inhibition on receptor subunit composition, the exception being the ρ1 receptor, which is markedly less sensitive. By using competition experiments with pregnenolone sulphate and the GABA channel blocker picrotoxinin, discrete binding sites are proposed. Furthermore, by assessing inhibition using site-directed mutagenesis and receptor chimeras comprising α, β or γ subunits with ρ1 subunits, the receptor transmembrane domains are strongly implicated in mediating inhibition and most likely the binding location for pregnenolone sulphate in GABAARs

    Physiological role for GABAA receptor desensitization in the induction of long-term potentiation at inhibitory synapses.

    Get PDF
    GGABAA receptors (GABAARs) are pentameric ligand-gated ion channels distributed throughout the brain where they mediate synaptic and tonic inhibition. Following activation, these receptors undergo desensitization which involves entry into long-lived agonist-bound closed states. Although the kinetic effects of this state are recognised and its structural basis has been uncovered, the physiological impact of desensitization on inhibitory neurotransmission remains unknown. Here we describe an enduring form of long-term potentiation at inhibitory synapses that elevates synaptic current amplitude for 24 h following desensitization of GABAARs in response to agonist exposure or allosteric modulation. Using receptor mutants and allosteric modulators we demonstrate that desensitization of GABAARs facilitates their phosphorylation by PKC, which increases the number of receptors at inhibitory synapses. These observations provide a physiological relevance to the desensitized state of GABAARs, acting as a signal to regulate the efficacy of inhibitory synapses during prolonged periods of inhibitory neurotransmission
    corecore