86 research outputs found

    Secular Resonances during Main-Sequence and Post-Main-Sequence Planetary System Dynamics

    Full text link
    We investigate gravitational perturbations of an asteroid belt by secular resonances. We ap- ply analytic and numerical models to main–sequence and post–main–sequence planetary systems. First, we investigate how the asteroid impact rate on the Earth is affected by the architecture of the planetary system. We find that the nu6 resonance plays an important role in the asteroid collision rate with the Earth. Compared to exoplanetary systems, the solar system is somewhat special in its lack of a super–Earth mass planet in the inner solar system. We therefore consider the effects of the presence of a super–Earth in the terrestrial planet region. We find a significant effect for super–Earths with a mass of around 10 M_{Earth} and a separation greater than about 0.7 AU. These results have implications for the habitability of exoplanetary systems. Secondly, we model white dwarf pollution by asteroids from secular resonances. In the past few decades, observations have revealed signatures of metals polluting the atmospheres of white dwarfs that require a continu- ous accretion of asteroids. We show that secular resonances driven by two outer companions can provide a source of pollution if an inner terrestrial planet is engulfed during the red-giant branch phase. Secular resonances may be a viable mechanism for the pollution of white dwarfs in a variety of exoplanetary system architectures including systems with two giant planets and systems with one giant planet and a binary star companion

    Formation of the warped debris disc around β\beta Pictoris

    Full text link
    In light of the recent confirmation of an eccentric orbit giant planet, β\beta Pic c, I revisit the formation and evolution of the warped debris disc in the system. β\beta Pic c is interior to β\beta Pic b, and the debris disc is exterior to both planets. Previous NN-body simulations have shown that β\beta Pic b is responsible for exciting the inclination of the debris disc. With hydrodynamical simulations, I model a protoplanetary gas disc misaligned with the planets. I find that the gas disc does not exhibit significant long lasting inclination excitation from the planets even for the observed disc size. The warp that is excited by the planets propagates through the entire disc with a timescale much less than the gas disc lifetime. Therefore, the observed warp in the debris disc must be produced after the gas disc has dispersed. With analytical secular theory calculations, I show that two secular resonances are exterior to β\beta Pic b, located at ∼20 au\sim 20\, \rm au and ∼25 au\sim 25\, \rm au. This agrees with my NN-body simulations that show that these secular resonances shape the inner edge of the β\beta Pic debris disc at a radius that agrees with observations.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    White Dwarf Pollution by Asteroids from Secular Resonances

    Full text link
    In the past few decades, observations have revealed signatures of metals polluting the atmospheres of white dwarfs. The diffusion time-scale for metals to sink from the atmosphere of a white dwarf is of the order of days for a hydrogen-dominated atmosphere. Thus, there must be a continuous supply of metal-rich material accreting onto these white dwarfs. We investigate the role of secular resonances that excite the eccentricity of asteroids allowing them to reach star-grazing orbits leading them to tidal disruption and the formation of a debris disc. Changes in the planetary system during the evolution of the star lead to a change in the location of secular resonances. In our Solar system, the engulfment of the Earth will cause the ν6 resonance to shift outwards which will force previously stable asteroids to undergo secular resonant perturbations. With analytic models and N-body simulations we show that secular resonances driven by two outer companions can provide a source of continuous pollution. Secular resonances are a viable mechanism for the pollution of white dwarfs in a variety of exoplanetary system architectures

    Alignment of a circumbinary disc around an eccentric binary with application to KH 15D

    Full text link
    We analyse the evolution of a mildly inclined circumbinary disc that orbits an eccentric orbit binary by means of smoother particle hydrodynamic (SPH) simulations and linear theory. We show that the alignment process of an initially misaligned circumbinary disc around an eccentric orbit binary is significantly different than around a circular orbit binary and involves tilt oscillations. The more eccentric the binary, the larger the tilt oscillations and the longer it takes to damp these oscillations. A circumbinary disc that is only mildly inclined may increase its inclination by a factor of a few before it moves towards alignment. The results of the SPH simulations agree well with those of linear theory. We investigate the properties of the circumbinary disc/ring around KH 15D. We determine disc properties based on the observational constraints imposed by the changing binary brightness. We find that the inclination is currently at a local minimum and will increase substantially before setting to coplanarity. In addition, the nodal precession is currently near its most rapid rate. The recent observations that show a reappearance of Star B impose constraints on the thickness of the layer of obscuring material. Our results suggest that disc solids have undergone substantial inward drift and settling towards to disc midplane. For disc masses ∼0.001M⊙\sim 0.001 M_\odot, our model indicates that the level of disc turbulence is low α≪0.001\alpha \ll 0.001. Another possibility is that the disc/ring contains little gas.Comment: 16 pages, 16 figures; accepted for publication in MNRA

    Accretion and Debris Disc Dynamics Around Single and Higher-Order Star Systems

    Full text link
    My research deals with highly topical areas of astrophysics, such as planet habitability, stellar evolution, the origin of fast radio bursts, the evolution of debris discs, and the dynamics of accretion discs in binary and higher-order star systems. Accretion discs around binary star systems are ubiquitous in the galaxy and planet formation is thought to occur within these discs. Circumbinary discs are commonly observed to be misaligned with respect to the binary orbital plane. A misaligned circumbinary disc eventually evolve to a stable orientation, either coplanar or polar with the binary orbital plane. The process of disc alignment has important implications for planet formation. By understanding the structure and evolution of these discs and also debris discs, I shed light on the observed characteristics of exoplanets. The majority of my doctoral research is to study the gas dynamics in binary and higher-order star systems with an emphasis on explaining observations and developing theoretical models to better constrain planet formation mechanisms. My results unravel robust planet formation scenarios, which have far reaching implications for the present and upcoming observations from space telescope TESS. Furthermore, the next-generation telescopes, such as James Webb Space Telescope and Thirty Meter Telescope will fuel the discovery of planets within binary and higher-order star systems

    Investigation of the Asteroid - Neutron Star Collision Model for the Repeating Fast Radio Burst

    Get PDF
    The origin of fast radio bursts (FRBs) is still a mystery. One model proposed to interpret the only known repeating object, FRB 121102, is that the radio emission is generated from asteroids colliding with a highly magnetized neutron star (NS). With N-body simulations, we model a debris disc around a central star with an eccentric orbit intruding NS. As the NS approaches the first periastron passage, most of the comets are scattered away rather than being accreted by the NS. To match the observed FRB rate, the debris belt would have to be at least 3 orders of magnitude more dense than the Kuiper belt. We also consider the rate of collisions on to the central object but find that the density of the debris belt must be at least 4 orders of magnitude more dense than the Kuiper belt. These discrepancies in the density arise even if (1) one introduces a Kuiper belt-like comet belt rather than an asteroid belt and assume that comet impacts can also make FRBs; (2) the NS moves ∼2 orders of magnitude slower than their normal proper-motion velocity due to supernova kicks; and (3) the NS orbit is coplanar to the debris belt, which provides the highest rate of collisions
    • …
    corecore