6 research outputs found

    Drivers and impacts of the most extreme marine heatwave events

    Get PDF
    Prolonged high-temperature extreme events in the ocean, marine heatwaves, can have severe and long-lasting impacts on marine ecosystems, fisheries and associated services. This study applies a marine heatwave framework to analyse a global sea surface temperature product and identify the most extreme events, based on their intensity, duration and spatial extent. Many of these events have yet to be described in terms of their physical attributes, generation mechanisms, or ecological impacts. Our synthesis identifies commonalities between marine heatwave characteristics and seasonality, links to the El Niño-Southern Oscillation, triggering processes and impacts on ocean productivity. The most intense events preferentially occur in summer, when climatological oceanic mixed layers are shallow and winds are weak, but at a time preceding climatological maximum sea surface temperatures. Most subtropical extreme marine heatwaves were triggered by persistent atmospheric high-pressure systems and anomalously weak wind speeds, associated with increased insolation, and reduced ocean heat losses. Furthermore, the most extreme events tended to coincide with reduced chlorophyll-a concentration at low and mid-latitudes. Understanding the importance of the oceanic background state, local and remote drivers and the ocean productivity response from past events are critical steps toward improving predictions of future marine heatwaves and their impact

    A global assessment of marine heatwaves and their drivers

    Get PDF
    Marine heatwaves (MHWs) can cause devastating impacts to marine life. Despite the serious consequences of MHWs, our understanding of their drivers is largely based on isolated case studies rather than any systematic unifying assessment. Here we provide the first global assessment under a consistent framework by combining a confidence assessment of the historical refereed literature from 1950 to February 2016, together with the analysis of MHWs determined from daily satellite sea surface temperatures from 1982–2016, to identify the important local processes, large-scale climate modes and teleconnections that are associated with MHWs regionally. Clear patterns emerge, including coherent relationships between enhanced or suppressed MHW occurrences with the dominant climate modes across most regions of the globe – an important exception being western boundary current regions where reports of MHW events are few and ocean-climate relationships are complex. These results provide a global baseline for future MHW process and prediction studies

    Ocean temperature controls kelp decomposition and carbon sink potential

    Get PDF
    Compelling new evidence shows that kelp production contributes an important and underappreciated flux of carbon in the ocean. Major questions remain, however, about the controls on the cycling of this organic carbon in the coastal zone, and their implications for future carbon sequestration. Here we used field experiments distributed across 28° latitude, and the entire range of two dominant kelps in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to environmental factors. Ocean temperature was the strongest control on detritus decomposition in both species, and it was positively related to decomposition. This suggests that decomposition could accelerate with ocean warming under climate change, increasing remineralization and reducing overall kelp carbon sequestration. However, we also demonstrate the potential for high kelp-carbon storage in cooler (northern) regions, which could be targeted by climate mitigation strategies to expand blue carbon sinks

    The Rotterdam Study: 2016 objectives and design update

    Full text link

    Mean-Field-Type Games in Engineering

    No full text

    Intracellular Factors Involved in Gene Expression of Human Retroviruses

    No full text
    corecore