44 research outputs found
Euler-Stieltjes constants for the Rankin-Selberg L-function and weighted Selberg orthogonality
Let E be Galois extension of Q of finite degree and let π and π\u27 be two irreducible automorphic unitary cuspidal representations of GLm(EA) and GLm\u27(EA), respectively. We prove an asymptotic formula for computation of coefficients γπ,π\u27(k) in the Laurent (Taylor) series expansion around s=1 of the logarithmic derivative of the Rankin-Selberg L-function L(s, π × π\u27) under assumption that at least one of representations π, π\u27 is self-contragredient and show that coefficients γπ,π\u27(k) are related to weighted Selberg orthogonality. We also replace the assumption that at least one of representations π and π\u27 is self-contragredient by a weaker one
THE IMPACT OF TRANSFORMATIONAL LEADERSHIP ON EMPLOYEE RESISTANCE TO CHANGE IN DIGITAL ORGANIZATIONS
Svrha ovog rada je ukazivanje na značaj primjene transformacijskog stila liderstva u prevencije pojave otpora kod zaposlenika u savremenim organizacijama, gdje se posebno izdvajaju digitalne organizacije. Transformacijsko liderstvo se pojavljuje kao snažan motivator, bazirano na idealnom uticaju, motivaciji i inspiraciji, intelektualnoj stimulaciji, te uvažavajući da svaki zaposlenik zahtjeva individualni pristup, vodeći kroz promjene i promovišući vrijednosti koje su u skladu sa novonastalim promjenama, stvarajući odgovarajuću poslovnu klimu povjerenja, a što ultimativno vodi do ostvarivanja ciljeva i rezultata poslovne organizacije. Moderne organizacije danas teže promjenama, a što vodi generisanju mnogih inovativnih poslovnih rješenja. Također su ključna područja gdje se stvaraju nove ideje, ideologije, kulture i sistemi vrijednosti, zbog čega je važna primjena odgovarajućeg stila liderstva kako bi ih efektivno dovela do željenih rezultata i ostvarenja poslovnih ciljeva. Problem u ostvarivanju ovih zadataka je pojava otpora kod zaposlenika uslijed nastalih promjena. Rad ima za cilj da kroz analizu literature pokaže koliko je važno razumjeti utjecaj koji transformacijski stil liderstva ima na smanjenje otpora kod zaposlenih, kako bi proces promjena mogao biti uspješno i pravilno implementiran. Rezultati istraživanja pokazuju da primjene transformacijskog stila u digitalnim organizacijamaThe purpose of this paper is to point out the importance of applying a transformational leadership style in the prevention of employees resitance to change in modern organizations, where digital organizations stand out. Transformational leadership appears as a strong motivator, based on ideal influence, motivation and inspiration, intellectual stimulation, and recognizing that each employee requires an individual approach, leading through changes and promoting values that are in line with newly emerging changes, creating an appropriate business climate of trust, and which ultimately leads to the achievement of the goals and results of the business organization. Modern organizations today strive for change, which leads to the generation of many innovative business solutions. They are also key areas where new ideas, ideologies, cultures and value systems are created, which is why it is important to apply the appropriate leadership style in order to effectively lead them to the desired results and the achievement of business goals. The problem in accomplishing these tasks is the appearance of resistance among employees due to the changes that have occurred. The aim of the paper is to show through the analysis of the literature how important it is to understand the impact that the transformational leadership style has on the reduction of resistance among employees, so that the process of change can be successfully and properly implemented. The results of the research show that the application of the transformational style in digital organizations contributes to the faster application of development solutions compared to the competition
On the Hurwitz-type zeta function associated to the Lucas sequence
We study the theta function and the Hurwitz-type zeta function associated to
the Lucas sequence of the first kind determined by
the real numbers under certain natural assumptions on and . We
deduce an asymptotic expansion of the theta function as
and use it to obtain a meromorphic continuation of the
Hurwitz-type zeta function to the whole complex
plane. Moreover, we identify the residues of
at all poles in the half-plane