13 research outputs found
Comparative study of nonlinear properties of EEG signals of a normal person and an epileptic patient
Background: Investigation of the functioning of the brain in living systems
has been a major effort amongst scientists and medical practitioners. Amongst
the various disorder of the brain, epilepsy has drawn the most attention
because this disorder can affect the quality of life of a person. In this paper
we have reinvestigated the EEGs for normal and epileptic patients using
surrogate analysis, probability distribution function and Hurst exponent.
Results: Using random shuffled surrogate analysis, we have obtained some of
the nonlinear features that was obtained by Andrzejak \textit{et al.} [Phys Rev
E 2001, 64:061907], for the epileptic patients during seizure. Probability
distribution function shows that the activity of an epileptic brain is
nongaussian in nature. Hurst exponent has been shown to be useful to
characterize a normal and an epileptic brain and it shows that the epileptic
brain is long term anticorrelated whereas, the normal brain is more or less
stochastic. Among all the techniques, used here, Hurst exponent is found very
useful for characterization different cases.
Conclusions: In this article, differences in characteristics for normal
subjects with eyes open and closed, epileptic subjects during seizure and
seizure free intervals have been shown mainly using Hurst exponent. The H shows
that the brain activity of a normal man is uncorrelated in nature whereas,
epileptic brain activity shows long range anticorrelation.Comment: Keywords:EEG, epilepsy, Correlation dimension, Surrogate analysis,
Hurst exponent. 9 page