12 research outputs found

    A pulsed-power implementation of ā€œLaser Gateā€ for increasing laser energy coupling and fusion yield in magnetized liner inertial fusion (MagLIF)

    Get PDF
    Magnetized Liner Inertial Fusion (MagLIF) at Sandia National Laboratories involves a laser preheating stage where a few-ns laser pulse passes through a few-micron-thick plastic window to preheat gaseous fusion fuel contained within the MagLIF target. Interactions with this window reduce heating efficiency and mix window and target materials into the fuel. A recently proposed idea called ā€œLaser Gateā€ involves removing the window well before the preheating laser is applied. In this article, we present experimental proof-of-principle results for a pulsed-power implementation of Laser Gate, where a thin current-carrying wire weakens the perimeter of the window, allowing the fuel pressure to push the window open and away from the preheating laser path. For this effort, transparent targets were fabricated and a test facility capable of studying this version of Laser Gate was developed. A 12-frame bright-field laser schlieren/shadowgraphy imaging system captured the window opening dynamics on microsecond timescales. The images reveal that the window remains largely intact as it opens and detaches from the target. A column of escaping pressurized gas appears to prevent the detached window from inadvertently moving into the preheating laser path

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37Ā MJ of fusion for 1.92Ā MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Magneto-Inertial Fusion

    Get PDF
    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans
    corecore