84 research outputs found

    Analysis of autophagy and inflammasome regulation in neuronal cells and monocytes infected with Chlamydia pneumoniae: Implications for Alzheimer’s disease

    Get PDF
    Objectives: Our laboratory has been studying the role of infection with the obligate intracellular bacterium Chlamydia pneumoniae in sporadic late-onset Alzheimer disease (LOAD). This infection may be a trigger for the pathology observed in LOAD as a function of initiating changes in gene regulation following entry of the organism into the brain. As such, we are analyzing how this infection can promote changes in autophagy and inflammasome gene regulation as both have been shown to be altered in LOAD. Methods: Human SKNMC neuronal cells and THP1 monocytes were infected in vitro for 24-72 hrs with a laboratory strain of Chlamydia pneumoniae followed by RNA extraction, cDNA synthesis and analysis using Real-Time PCR microarrays for autophagy and inflammasome genes. Results: Gene expression for autophagy and inflammasome pathways was altered dramatically following infection. Genes encoding for co-regulation of autophagy, apoptosis, and the cell cycle that were significantly changed included: BCL2L1, FAS, PIK3CG, APP, and TP53. In addition, ATG3, and GABARAP, genes encoding for protein transport & ubiquitination and autophagic vacuole formation were significantly deregulated. Of the inflammasome genes, 4 NOD-like receptor genes were significantly up-regulated. IL-1beta, AIM2, CCL2, and CCL7 genes were all dramatically up-regulated in monocytes during the 72 hrs of infection. Conclusions: Our data suggest that Chlamydia pneumoniae-infected human SKNMC neuronal cells and THP1 monocytes exhibit specific changes in gene regulation for both autophagy and inflammasome pathways. These gene changes appear to correlate with pathologic changes previously reported in AD and further support the contention that infection with Chlamydia pneumoniae plays a role in LOAD pathogenesis.https://digitalcommons.pcom.edu/posters/1001/thumbnail.jp

    Continuous Tcr signaling in the atherosclerotic environment induces immunomodulatory Cd8+ T-cells expressing Cd39

    Get PDF
    CD8+ T-cells can be atheroprotective in clinically relevant advanced stages of atherosclerosis, as their depletion results in less stable lesions with a more inflammatory phenotype. However, the phenotype and function of these cells in the lesional microenvironment remains to be determined. Here, we address how the atherosclerotic environment affects the functionality of CD8+ T-cells.We compared the cytokine production of CD8+ T-cells derived from spleens and aortas of apoE-/- mice with advanced atherosclerosis by flow cytometry.CD8+ T-cells isolated from atherosclerotic lesions produced lower amounts of IFN-γ and TNF-α than their splenic counterparts. The observed dysfunctional phenotype of the lesion-derived CD8+ T-cells was associated with an increased expression of the ectonucleotidase CD39, which converts inflammatory extracellular ATP into immunomodulatory adenosine. Indeed, pharmacological inhibition of CD39 in apoE-/- mice partly restored cytokine production by CD8+ T-cells. Using a bone-marrow transplantation approach, we showed that induction of CD39 was a consequence of antigen-specific CD8+ T-cell activation via T-cell receptor (TCR) signaling within the lesions. Importantly, analysis of human endarterectomy samples showed a clear microenvironment specific upregulation of CD39 on CD8+ T-cells in the plaques of human patients compared to matched CD8+ T-cells from the blood .Our results indicate that the continuous TCR signaling in the atherosclerotic plaque induces an immune regulatory CD8+ T-cell phenotype that is associated with decreased cytokine production through increased CD39 expression in both a murine atherosclerotic model and in atherosclerosis patients. This provides a new understanding of atheroprotective immune regulation by CD8+ T-cells.Biopharmaceutic

    The Cu_A Center of a Soluble Domain from Thermus Cytochrome ba_3. An NMR Investigation of the Paramagnetic Protein

    Get PDF
    The Cu_A center in subunit II of cytochrome c oxidase, the terminal enzyme of aerobic respiration, transfers electrons from cytochrome c to the proton-pumping machinery in subunit I. The unique electronic absorption and EPR spectra of Cu_A exclude it from classification with the well-studied biological copper centers. High-resolution X-ray structures of Cu_A-containing proteins reveal two copper atoms approximately 2.5 Ã… apart, bridged by two cysteine sulfurs. Each Cu has a terminal histidine ligand and a weak ligand, methionine for one and a main chain carbonyl for the other. These structures are consistent with earlier EPR measurements and theoretical calculations, which predicted a highly delocalized mixed-valence [Cu(II),Cu(I)] Cu_A site. Here we report ^1H NMR measurements at 600 MHz on a soluble Cu_A domain from Thermus thermophilus cytochrome ba_3

    Transient Facial Nerve Paralysis (Bell's Palsy) following Intranasal Delivery of a Genetically Detoxified Mutant of Escherichia coli Heat Labile Toxin

    Get PDF
    BACKGROUND: An association was previously established between facial nerve paralysis (Bell's palsy) and intranasal administration of an inactivated influenza virosome vaccine containing an enzymatically active Escherichia coli Heat Labile Toxin (LT) adjuvant. The individual component(s) responsible for paralysis were not identified, and the vaccine was withdrawn. METHODOLOGY/PRINCIPAL FINDINGS: Subjects participating in two contemporaneous non-randomized Phase 1 clinical trials of nasal subunit vaccines against Human Immunodeficiency Virus and tuberculosis, both of which employed an enzymatically inactive non-toxic mutant LT adjuvant (LTK63), underwent active follow-up for adverse events using diary-cards and clinical examination. Two healthy subjects experienced transient peripheral facial nerve palsies 44 and 60 days after passive nasal instillation of LTK63, possibly a result of retrograde axonal transport after neuronal ganglioside binding or an inflammatory immune response, but without exaggerated immune responses to LTK63. CONCLUSIONS/SIGNIFICANCE: While the unique anatomical predisposition of the facial nerve to compression suggests nasal delivery of neuronal-binding LT-derived adjuvants is inadvisable, their continued investigation as topical or mucosal adjuvants and antigens appears warranted on the basis of longstanding safety via oral, percutaneous, and other mucosal routes

    In vitro and in vivo mRNA delivery using lipid-enveloped pHresponsive polymer nanoparticles

    Get PDF
    Biodegradable core−shell structured nanoparticles with a poly(β-amino ester) (PBAE) core enveloped by a phospholipid bilayer shell were developed for in vivo mRNA delivery with a view toward delivery of mRNA-based vaccines. The pH-responsive PBAE component was chosen to promote endosome disruption, while the lipid surface layer was selected to minimize toxicity of the polycation core. Messenger RNA was efficiently adsorbed via electrostatic interactions onto the surface of these net positively charged nanoparticles. In vitro, mRNA-loaded particle uptake by dendritic cells led to mRNA delivery into the cytosol with low cytotoxicity, followed by translation of the encoded protein in these difficult-to-transfect cells at a frequency of 30%. Particles loaded with mRNA administered intranasally (i.n.) in mice led to the expression of the reporter protein luciferase in vivo as soon as 6 h after administration, a time point when naked mRNA given i.n. showed no expression. At later time points, luciferase expression was detected in naked mRNA-treated mice, but this group showed a wide variation in levels of transfection, compared to particle-treated mice. This system may thus be promising for noninvasive delivery of mRNA-based vaccines.United States. Dept. of Defense (Institute for Soldier Nanotechnology, contract W911NF-07-D-0004)Ragon Institute of MGH, MIT and HarvardSingapore. Agency for Science, Technology and ResearchHoward Hughes Medical Institute (Investigator
    • …
    corecore