231 research outputs found

    Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping

    Full text link
    Owing to the advent of large area photometric surveys, the possibility to use broad band photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei, has raised a large interest. We describe here a new method using time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images which is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques which use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.Comment: Accepted for publication in Astronomy and Astrophysic

    Optical linear polarization measurements of quasars obtained with the 3.6m telescope at the La Silla Observatory

    Full text link
    We report 192 previously unpublished optical linear polarization measurements of quasars obtained in April 2003, April 2007, and October 2007 with the European Southern Observatory Faint Object Spectrograph and Camera (EFOSC2) instrument attached to the 3.6m telescope at the La Silla Observatory. Each quasar was observed once. Among the 192 quasars, 89 have a polarization degree p0.6%p \geq 0.6\%, 18 have p2%p \geq 2\%, and two have p10%p \geq 10\%.Comment: Accepted for publication in A&

    Probing the inner structure of distant AGNs with gravitational lensing

    Full text link
    Microlensing is a powerful technique which can be used to study the continuum and the broad line emitting regions in distant AGNs. After a brief description of the methods and required data, we present recent applications of this technique. We show that microlensing allows one to measure the temperature profile of the accretion disc, estimate the size and study the geometry of the region emitting the broad emission lines.Comment: 6 pages, Proceedings of the Seyfert 2012 conferenc

    Microlensing of the broad line region in 17 lensed quasars

    Full text link
    When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be observed in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% show microlensing of the broad emission lines. Focusing on the most common lines in our spectra (CIII] and MgII) we detect microlensing of either the blue or the red wing, or of both wings with the same amplitude. This observation implies that the broad line region is not in general spherically symmetric. In addition, the frequent detection of microlensing of the blue and red wings independently but not simultaneously with a different amplitude, does not support existing microlensing simulations of a biconical outflow. Our analysis also provides the intrinsic flux ratio between the lensed images and the magnitude of the microlensing affecting the continuum. These two quantities are particularly relevant for the determination of the fraction of matter in clumpy form in galaxies and for the detection of dark matter substructures via the identification of flux ratio anomalies.Comment: Accepted for publication in Astronomy and Astrophysics. Main data set available via the German virtual observatory http://dc.g-vo.org/mlqso/q/web/form and soon via CDS. Additional material available on reques

    Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    Full text link
    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding to the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30\% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 \AA. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as TR1/νT \propto R^{-1/\nu}. We find a most likely source half-light radius of R1/2=0.61×1016R_{1/2} = 0.61 \times 10^{16}\,cm (i.e., 0.002\,pc) at 0.18\,μ\mum, and a most-likely index of ν=0.4\nu=0.4. The standard disc (ν=4/3\nu=4/3) model is not ruled out by our data, and is found within the 95\% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature.Comment: Accepted for publication in Astronomy and Astrophysics. 12 pages. Minor changes w.r.t. v1 (language editing, Fig. 5-6

    Mid-infrared microlensing of accretion disc and dusty torus in quasars: effects on flux ratio anomalies

    Full text link
    Multiply-imaged quasars and AGNs observed in the mid-infrared (MIR) range are commonly assumed to be unaffected by the microlensing produced by the stars in their lensing galaxy. In this paper, we investigate the validity domain of this assumption. Indeed, that premise disregards microlensing of the accretion disc in the MIR range, and does not account for recent progress in our knowledge of the dusty torus. To simulate microlensing, we first built a simplified image of the quasar composed of an accretion disc, and of a larger ring-like torus. The mock quasars are then microlensed using an inverse ray-shooting code. We simulated the wavelength and size dependence of microlensing for different lensed image types and fraction of compact objects projected in the lens. This allows us to derive magnification probabilities as a function of wavelength, as well as to calculate the microlensing-induced deformation of the spectral energy distribution of the lensed images. We find that microlensing variations as large as 0.1 mag are very common at 11 microns (observer-frame). The main signal comes from microlensing of the accretion disc, which may be significant even when the fraction of flux from the disc is as small as 5 % of the total flux. We also show that the torus of sources with Lbol <~ 10^45 erg/s is expected to be noticeably microlensed. Microlensing may thus be used to get insight into the rest near-infrared inner structure of AGNs. Finally, we investigate whether microlensing in the mid-infrared can alter the so-called Rcusp relation that links the fluxes of the lensed images triplet produced when the source lies close to a cusp macro-caustic. This relation is commonly used to identify massive (dark-matter) substructures in lensing galaxies. We find that significant deviations from Rcusp may be expected, which means that microlensing can explain part of the flux ratio problem.Comment: Updated to match the version published in Astronomy and Astrophysics. 12 pages. Abridged version of the abstract. Microlensing maps and source profiles used in the simulations are available via CDS - http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/553/A5

    H0LiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033−4723

    Get PDF
    Galaxies and galaxy groups located along the line of sight towards gravitationally lensed quasars produce high-order perturbations of the gravitational potential at the lens position. When these perturbation are too large, they can induce a systematic error on H0 of a few per cent if the lens system is used for cosmological inference and the perturbers are not explicitly accounted for in the lens model. In this work, we present a detailed characterization of the environment of the lens system WFI 2033−4723 (⁠z_(src) = 1.662, z_(lens) = 0.6575), one of the core targets of the H0LiCOW project for which we present cosmological inferences in a companion paper. We use the Gemini and ESO-Very Large telescopes to measure the spectroscopic redshifts of the brightest galaxies towards the lens, and use the ESO-MUSE integral field spectrograph to measure the velocity-dispersion of the lens (⁠σ_(los) = 250^(+15)_(−21) km s⁻¹) and of several nearby galaxies. In addition, we measure photometric redshifts and stellar masses of all galaxies down to i < 23 mag, mainly based on Dark Energy Survey imaging (DR1). Our new catalogue, complemented with literature data, more than doubles the number of known galaxy spectroscopic redshifts in the direct vicinity of the lens, expanding to 116 (64) the number of spectroscopic redshifts for galaxies separated by less than 3 arcmin (2 arcmin ) from the lens. Using the flexion-shift as a measure of the amplitude of the gravitational perturbation, we identify two galaxy groups and three galaxies that require specific attention in the lens models. The ESO MUSE data enable us to measure the velocity-dispersions of three of these galaxies. These results are essential for the cosmological inference analysis presented in Rusu et al
    corecore