40 research outputs found

    Estimating the upper limit of prehistoric peak ground acceleration using an in situ, intact and vulnerable stalagmite from Plavecká priepast cave (Detrekői-zsomboly), Little Carpathians, Slovakia—first results

    No full text
    Earthquakes hit urban centres in Europe infrequently, but occasionally with disastrous effects. Obtaining an unbiased view of seismic hazard (and risk) is therefore very important. In principle, the best way to test probabilistic seismic hazard assessments (PSHAs) is to compare them with observations that are entirely independent of the procedure used to produce PSHA models. Arguably, the most valuable information in this context should be information on long-term hazard, namely maximum intensities (or magnitudes) occurring over time intervals that are at least as long as a seismic cycle. The new observations can provide information of maximum intensity (or magnitude) for long timescale as an input data for PSHA studies as well. Long-term information can be gained from intact stalagmites in natural caves. These formations survived all earthquakes that have occurred over thousands of years, depending on the age of the stalagmite. Their ‘survival’ requires that the horizontal ground acceleration (HGA) has never exceeded a certain critical value within that time period. Here, we present such a stalagmite-based case study from the Little Carpathians of Slovakia. A specially shaped, intact and vulnerable stalagmite in the Plavecká priepast cave was examined in 2013. This stalagmite is suitable for estimating the upper limit of horizontal peak ground acceleration generated by prehistoric earthquakes. The critical HGA values as a function of time going back into the past determined from the stalagmite that we investigated are presented. For example, at the time of Jókő event (1906), the critical HGA value cannot have been higher than 1 and 1.3 m/s2 at the time of the assumed Carnuntum event (∼340 AD), and 3000 years ago, it must have been lower than 1.7 m/s2. We claimed that the effect of Jókő earthquake (1906) on the location of the Plavecká priepast cave is consistent with the critical HGA value provided by the stalagmite we investigated. The approach used in this study yields significant new constraints on the seismic hazard, as tectonic structures close to Plavecká priepast cave did not generate strong earthquakes in the last few thousand years. The results of this study are highly relevant given that the two capitals, Vienna and Bratislava, are located within 40 and 70 km of the cave, respectively.© The Author(s

    The structure and DNA-binding properties of Mgm101 from a yeast with a linear mitochondrial genome

    No full text
    To study the mechanisms involved in the maintenance of a linear mitochondrial genome we investigated the biochemical properties of the recombination protein Mgm101 from Candida parapsilosis. We show that CpMgm101 complements defects associated with the Saccharomyces cerevisiae mgm101–1ts mutation and that it is present in both the nucleus and mitochondrial nucleoids of C. parapsilosis. Unlike its S. cerevisiae counterpart, CpMgm101 is associated with the entire nucleoid population and is able to bind to a broad range of DNA substrates in a non-sequence specific manner. CpMgm101 is also able to catalyze strand annealing and D-loop formation. CpMgm101 forms a roughly C-shaped trimer in solution according to SAXS. Electron microscopy of a complex of CpMgm101 with a model mitochondrial telomere revealed homogeneous, ring-shaped structures at the telomeric single-stranded overhangs. The DNA-binding properties of CpMgm101, together with its DNA recombination properties, suggest that it can play a number of possible roles in the replication of the mitochondrial genome and the maintenance of its telomeres.© The Author(s) 201

    Skeletal muscle alkaline Pi pool is decreased in overweight-to-obese sedentary subjects and relates to mitochondrial capacity and phosphodiester content

    No full text
    Defects in skeletal muscle energy metabolism are indicative of systemic disorders such as obesity or type 2 diabetes. Phosphorus magnetic resonance spectroscopy (31P-MRS), in particularly dynamic 31P-MRS, provides a powerful tool for the non-invasive investigation of muscular oxidative metabolism. The increase in spectral and temporal resolution of 31P-MRS at ultra high fields (i.e., 7T) uncovers new potential for previously implemented techniques, e.g., saturation transfer (ST) or highly resolved static spectra. In this study, we aimed to investigate the differences in muscle metabolism between overweight-to-obese sedentary (Ob/Sed) and lean active (L/Ac) individuals through dynamic, static, and ST 31P-MRS at 7T. In addition, as the dynamic 31P-MRS requires a complex setup and patient exercise, our aim was to identify an alternative technique that might provide a biomarker of oxidative metabolism. The Ob/Sed group exhibited lower mitochondrial capacity, and, in addition, static 31P-MRS also revealed differences in the Pi-to-ATP exchange flux, the alkaline Pi-pool, and glycero-phosphocholine concentrations between the groups. In addition to these differences, we have identified correlations between dynamically measured oxidative flux and static concentrations of the alkaline Pi-pool and glycero-phosphocholine, suggesting the possibility of using high spectral resolution 31P-MRS data, acquired at rest, as a marker of oxidative metabolism

    cis-Tetrachlorido-bis(indazole)osmium(iv) and its osmium(iii) analogues: paving the way towards the cis-isomer of the ruthenium anticancer drugs KP1019 and/or NKP1339

    No full text
    The relationship between cis–trans isomerism and anticancer activity has been mainly addressed for square-planar metal complexes, in particular, for platinum(II), e.g., cis- and trans-[PtCl2(NH3)2], and a number of related compounds, of which, however, only cis-counterparts are in clinical use today. For octahedral metal complexes, this effect of geometrical isomerism on anticancer activity has not been investigated systematically, mainly because the relevant isomers are still unavailable. An example of such an octahedral complex is trans-[RuCl4(Hind)2]−, which is in clinical trials now as its indazolium (KP1019) or sodium salt (NKP1339), but the corresponding cis-isomers remain inaccessible. We report the synthesis of Na[cis-OsIIICl4(κN2-1H-ind)2]·(Na[1]) suggesting a route to the cis-isomer of NKP1339. The procedure involves heating (H2ind)[OsIVCl5(κN1-2H-ind)] in a high boiling point organic solvent resulting in an Anderson rearrangement with the formation of cis-[OsIVCl4(κN2-1H-ind)2] ([1]) in high yield. The transformation is accompanied by an indazole coordination mode switch from κN1 to κN2 and stabilization of the 1H-indazole tautomer. Fully reversible spectroelectrochemical reduction of [1] in acetonitrile at 0.46 V vs. NHE is accompanied by a change in electronic absorption bands indicating the formation of cis-[OsIIICl4(κN2-1H-ind)2]− ([1]−). Chemical reduction of [1] in methanol with NaBH4 followed by addition of nBu4NCl afforded the osmium(III) complex nBu4N[cis-OsIIICl4(κN2-1H-ind)2] (nBu4N[1]). A metathesis reaction of nBu4N[1] with an ion exchange resin led to the isolation of the water-soluble salt Na[1]. The X-ray diffraction crystal structure of [1]·Me2CO was determined and compared with that of trans-[OsIVCl4(κN2-1H-ind)2]·2Me2SO (2·2Me2SO), also prepared in this work. EPR spectroscopy was performed on the OsIII complexes and the results were analyzed by ligand-field and quantum chemical theories. We furthermore assayed effects of [1] and Na[1] on cell viability and proliferation in comparison with trans-[OsIVCl4(κN1-2H-ind)2] [3] and cisplatin and found a strong reduction of cell viability at concentrations between 30 and 300 μM in different cancer cell lines (HT29, H446, 4T1 and HEK293). HT-29 cells are less sensitive to cisplatin than 4T1 cells, but more sensitive to [1] and Na[1], as shown by decreased proliferation and viability as well as an increased late apoptotic/necrotic cell population
    corecore