15 research outputs found

    Reproducibility of magnetic resonance fingerprinting-based T 1 mapping of the healthy prostate at 1.5 and 3.0 T: A proof-of-concept study

    Get PDF
    Funder: Cancer Research UK; funder-id: http://dx.doi.org/10.13039/501100000289Funder: National Institute of Health Research Cambridge Biomedical Research CentreFunder: Cancer Research UK and the Engineering and Physical Sciences Research Council Imaging Centre in Cambridge and ManchesterFunder: Cambridge Experimental Cancer Medicine CentreFacilitating clinical translation of quantitative imaging techniques has been suggested as means of improving interobserver agreement and diagnostic accuracy of multiparametric magnetic resonance imaging (mpMRI) of the prostate. One such technique, magnetic resonance fingerprinting (MRF), has significant competitive advantages over conventional mapping techniques in terms of its multi-site reproducibility, short scanning time and inherent robustness to motion. It has also been shown to improve the detection of clinically significant prostate cancer when added to standard mpMRI sequences, however, the existing studies have all been conducted on 3.0 T MRI systems, limiting the technique’s use on 1.5 T MRI scanners that are still more widely used for prostate imaging across the globe. The aim of this proof-of-concept study was, therefore, to evaluate the cross-system reproducibility of prostate MRF T1 in healthy volunteers (HVs) using 1.5 and 3.0 T MRI systems. The initial validation of MRF T1 against gold standard inversion recovery fast spin echo (IR-FSE) T1 in the ISMRM/NIST MRI system revealed a strong linear correlation between phantom-derived MRF and IR-FSE T1 values was observed at both field strengths (R2 = 0.998 at 1.5T and R2 = 0.993 at 3T; p = < 0.0001 for both). In young HVs, inter-scanner CVs demonstrated marginal differences across all tissues with the highest difference of 3% observed in fat (2% at 1.5T vs 5% at 3T). At both field strengths, MRF T1 could confidently differentiate prostate peripheral zone from transition zone, which highlights the high quantitative potential of the technique given the known difficulty of tissue differentiation in this age group. The high cross-system reproducibility of MRF T1 relaxometry of the healthy prostate observed in this preliminary study, therefore, supports the technique’s prospective clinical validation as part of larger trials employing 1.5 T MRI systems, which are still widely used clinically for routine mpMRI of the prostate

    Reproducibility of magnetic resonance fingerprinting-based T1 mapping of the healthy prostate at 1.5 and 3.0 T: A proof-of-concept study.

    No full text
    Facilitating clinical translation of quantitative imaging techniques has been suggested as means of improving interobserver agreement and diagnostic accuracy of multiparametric magnetic resonance imaging (mpMRI) of the prostate. One such technique, magnetic resonance fingerprinting (MRF), has significant competitive advantages over conventional mapping techniques in terms of its multi-site reproducibility, short scanning time and inherent robustness to motion. It has also been shown to improve the detection of clinically significant prostate cancer when added to standard mpMRI sequences, however, the existing studies have all been conducted on 3.0 T MRI systems, limiting the technique's use on 1.5 T MRI scanners that are still more widely used for prostate imaging across the globe. The aim of this proof-of-concept study was, therefore, to evaluate the cross-system reproducibility of prostate MRF T1 in healthy volunteers (HVs) using 1.5 and 3.0 T MRI systems. The initial validation of MRF T1 against gold standard inversion recovery fast spin echo (IR-FSE) T1 in the ISMRM/NIST MRI system revealed a strong linear correlation between phantom-derived MRF and IR-FSE T1 values was observed at both field strengths (R2 = 0.998 at 1.5T and R2 = 0.993 at 3T; p = < 0.0001 for both). In young HVs, inter-scanner CVs demonstrated marginal differences across all tissues with the highest difference of 3% observed in fat (2% at 1.5T vs 5% at 3T). At both field strengths, MRF T1 could confidently differentiate prostate peripheral zone from transition zone, which highlights the high quantitative potential of the technique given the known difficulty of tissue differentiation in this age group. The high cross-system reproducibility of MRF T1 relaxometry of the healthy prostate observed in this preliminary study, therefore, supports the technique's prospective clinical validation as part of larger trials employing 1.5 T MRI systems, which are still widely used clinically for routine mpMRI of the prostate

    Role of PROPELLER-DWI of the prostate in reducing distortion and artefact from total hip replacement metalwork.

    No full text
    OBJECTIVE: To compare image quality, artefact, and distortion in standard echo-planar imaging (EPI) with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) for prostate magnetic resonance imaging (MRI) diffusion-weighted imaging (DWI) in patients with previous total hip replacement (THR). METHODS: 21 male subjects with a clinical suspicion for, or known prostate cancer and previous THR were scanned at 1.5 T using a phased-array body coil. DWI was obtained using single-shot EPI and PROPELLER techniques using fat saturation (PROPELLER-DWI-FS), and without (PROPELLER-DWI-NFS). Image quality (the overall impression of diagnostic quality) was compared to T2-weighted (T2WI) imaging using a 5-point Likert scale, with diffusion sequences additionally scored for artefact and distortion according to a 4-point scale, with artefact defined as the amount of prostate affected and distortion as the degree of warping of the organ. The T2W and DW image volumes were compared to produce quantitative distortion maps. A two-sample Wilcoxon test compared the qualitative scores, with inter-reader variability calculated using Cohen's kappa. RESULTS: 21 patients were included in the study, with an average age of 70.4 years and PSA 9.2 ng/ml. Hip metalwork was present bilaterally in 3 patients, left-sided in 9, and right-sided in 9. PROPELLER-DWI-FS significantly improved image quality (p < 0.01) and reduced distortion (p < 0.01) when compared to standard EP-DWI. Artefact was not shown to be significantly improved. The last 5 patients in the study were additionally imaged with PROPELLER-DWI-NFS, which resulted in a significant reduction in artefact compared to EP-DWI (p < 0.05). Quantitative distortion was significantly lower compared to EP-DWI for both PROPELLER with fat saturation (p < 0.01) and without fat saturation (p < 0.01). CONCLUSION: PROPELLER-DWI demonstrates better image quality and decreases both artefact and distortion compared to conventional echo planar sequences in patients with hip metalwork
    corecore