3 research outputs found
Chemical equilibration of strangeness
Thermal models are very useful in the understanding of particle production in
general and especially in the case of strangeness. We summarize the assumptions
which go into a thermal model calculation and which differ in the application
of various groups. We compare the different results to each other. Using our
own calculation we discuss the validity of the thermal model and the amount of
strangeness equilibration at CERN-SPS energies. Finally the implications of the
thermal analysis on the reaction dynamics are discussed.Comment: 23 pages, LaTeX (figures included); Talk given at the Int. Symposium
on Strangeness in Quark Matter 1997, Santorini (Greece), April 199
Thermal analysis of hadron multiplicities from relativistic quantum molecular dynamics
Some questions arising in the application of the thermal model to hadron
production in heavy ion collisions are studied. We do so by applying the
thermal model of hadron production to particle yields calculated by the
microscopic transport model RQMD(v2.3). We study the bias of incomplete
information about the final hadronic state on the extraction of thermal
parameters.It is found that the subset of particles measured typically in the
experiments looks more thermal than the complete set of stable particles. The
hadrons which show the largest deviations from thermal behaviour in RQMD(v2.3)
are the multistrange baryons and antibaryons. We also looked at the influence
of rapidity cuts on the extraction of thermal parameters and found that they
lead to different thermal parameters and larger disagreement between the RQMD
yields and the thermal model.Comment: 12 pages, 2 figures, uses REVTEX, only misprint and stylistic
corrections, to appear in Physical Review
System-size dependence
The final state in The final state in heavy-ion collisions has a higher
degree of strangeness saturation than the one produced in collisions between
elementary particles like p-p or p-. A systematic analysis of this
phenomenon is made for C-C, Si-Si and Pb-Pb collisions at the CERN SPS collider
and for collisions at RHIC and at AGS energies. Strangeness saturation
is shown to increase smoothly with the number of participants at AGS, CERN and
RHIC energies.Comment: 5 pages, 5 figures, presented at SQM2003 conferenc