51 research outputs found

    Biological effects of rinsing morsellised bone grafts before and after impaction

    Get PDF
    Rinsing bone grafts before or both before and after impaction might have different effects on the incorporation of the graft. Rinsing again after impaction might negatively influence bone induction if growth factors released by impaction are washed away. We studied if transforming growth factor-βs (TGF-βs) and bone morphogenetic proteins (BMPs) are released from the mineralised matrix by impaction and if these released growth factors induce osteogenic differentiation in human mesenchymal stem cells (hMSCs). Rinsed morsellised bone allografts were impacted in a cylinder and the escaping fluid was collected. The fluid was analysed for the presence of TGF-βs and BMPs, and the osteoinductive capacity was tested on hMSCs. Abundant TGF-β was present in the fluid. No BMPs could be detected. Osteogenic differentiation of hMSCs was inhibited by the fluid. Results from our study leave us only able to speculate whether rinsing grafts again after impaction has a beneficial effect on the incorporation process or not

    Design and management of an orthopaedic bone bank in the Netherlands

    Get PDF
    The design and management of an orthopaedic bone bank is a complex process in which medical organisation and legislation intertwine. Neither in the Netherlands, nor in any other European country, there are official guidelines for the organisation and management of an orthopaedic bone bank. In the Netherlands, the recently modified ‘law of security and quality for using human materials’ (WVKL) dictates requirements for technical and organisational aspects for the use of human tissue and cells. The bone bank procedures include a thorough questionnaire for donor selection, extensive serological, bacteriological and histopathological examination, as well as standard procedures for registration, processing, preservation, storage and distribution of bone allografts. This article describes the organisation of an accredited bone bank and can be used as a proposition for an official guideline or can be useful as an example for other orthopaedic bone banks in Europe

    Impregnation of bone chips with antibiotics and storage of antibiotics at different temperatures: an in vitro study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allograft bone used in joint replacement surgery can additionally serve as a carrier for antibiotics and serve as a prophylaxis against infections. However, <it>in vitro </it>dose-response curves for bone chips impregnated with different kinds of antibiotics are not available. In addition, while it would be desirable to add the antibiotics to allograft bone chips before these are stored in a bone bank, the effects of different storage temperatures on antibiotics are unknown.</p> <p>Methods</p> <p>Five different antibiotics (cefazolin, clindamycin, linezolid, oxacillin, vancomycin) were stored, both as pills and as solutions, at -80°C, -20°C, 4°C, 20°C and 37°C; in addition, bone chips impregnated with cefazolin and vancomycin were stored at -80°C and -20°C. After 1 month, 6 months and 1 year, the activity of the antibiotics against <it>Staphylococcus epidermidis </it>was measured using an inoculated agar. The diameter of the <it>S. epidermidis</it>-free zone was taken as a measure of antibiotic activity.</p> <p>In a separate experiment, <it>in vitro </it>dose-response curves were established for bone chips impregnated with cefazolin and vancomycin solutions at five different concentrations.</p> <p>Finally, the maximum absorbed amounts of cefazolin and vancomycin were established by impregnating 1 g of bone chips with 5 ml of antibiotic solution.</p> <p>Results</p> <p>A decrease of the <it>S. epidermidis</it>-free zone was seen with oxacillin and cefazolin solutions stored at 37°C for 1 month, with vancomycin stored at 37°C for 6 months and with cefazolin and oxacillin solutions stored at 20°C for 6 months. The activity of the other antibiotic solutions, pills and impregnated bone chips was not affected by storage. The <it>in vitro </it>dose-response curves show that the free-zone diameter increases logarithmically with antibiotic concentration. The absorbed antibiotic amount of one gram bone chips was determined.</p> <p>Conclusions</p> <p>Storage of antibiotics in frozen form or storage of antibiotic pills at temperatures up to 37°C for 12 months does not affect their activity. However, storage of antibiotic solutions at temperatures above 20°C does affect the activity of some of the antibiotics investigated. The <it>in vitro </it>dose-response curve can be used to determine the optimal concentration(s) for local application. It provides the opportunity to determine the antibiotic content of bone chips, and thus the amount of antibiotics available locally after application.</p

    B-cell lymphoma in retrieved femoral heads: a long term follow up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A relatively high incidence of pathological conditions in retrieved femoral heads, including a group of patients having low grade B-cell lymphoma, has been described before. At short term follow up none of these patients with low-grade B-cell lymphoma showed evidence of systemic disease. However, the long term follow up of these patients is not known.</p> <p>Methods</p> <p>From November 1994 up to and including December 2005 we screened all femoral heads removed at the time of primary total hip replacement histopathologically and included them in the bone banking protocol according to the guidelines of the American Associations of Tissue Banks (AATB) and the European Association of Musculo-Skeletal Transplantation (EAMST). We determined the percentage of B-cell lymphoma in all femoral heads and in the group that fulfilled all criteria of the bone banking protocol and report on the long-term follow-up.</p> <p>Results</p> <p>Of 852 femoral heads fourteen (1.6%) were highly suspicious for low-grade B-cell lymphoma. Of these 852 femoral heads, 504 were eligible for bone transplantation according to the guidelines of the AATB and the EAMST. Six femoral heads of this group of 504 were highly suspicious for low-grade B-cell lymphoma (1.2%). At long term follow up two (0.2%) of all patients developed systemic malignant disease and one of them needed medical treatment for her condition.</p> <p>Conclusion</p> <p>In routine histopathological screening we found variable numbers of low-grade B-cell lymphoma throughout the years, even in a group of femoral heads that were eligible for bone transplantation. Allogenic transmission of malignancy has not yet been reported on, but surviving viruses are proven to be transmissible. Therefore, we recommend the routine histopathological evaluation of all femoral heads removed at primary total hip arthroplasty as a tool for quality control, whether the femoral head is used for bone banking or not.</p

    Impaction bone grafting of the acetabulum at hip revision using a mix of bone chips and a biphasic porous ceramic bone graft substitute: Good outcome in 43 patients followed for a mean of 2 years

    Get PDF
    Background and purpose One of the greatest problems of revision hip arthroplasty is dealing with lost bone stock. Good results have been obtained with impaction grafting of allograft bone. However, there have been problems of infection, reproducibility, antigenicity, stability, availability of bone, and cost. Thus, alternatives to allograft have been sought. BoneSave is a biphasic porous ceramic specifically designed for use in impaction grafting. BoneSave is 80% tricalcium phosphate and 20% hydroxyapatite. Previous in vitro and in vivo studies have yielded good results using mixtures of allograft and BoneSave, when compared with allograft alone. This study is the first reported human clinical trial of BoneSave in impaction grafting
    corecore