82 research outputs found
Current driven switching of magnetic layers
The switching of magnetic layers is studied under the action of a spin
current in a ferromagnetic metal/non-magnetic metal/ferromagnetic metal spin
valve. We find that the main contribution to the switching comes from the
non-equilibrium exchange interaction between the ferromagnetic layers. This
interaction defines the magnetic configuration of the layers with minimum
energy and establishes the threshold for a critical switching current.
Depending on the direction of the critical current, the interaction changes
sign and a given magnetic configuration becomes unstable. To model the time
dependence of the switching process, we derive a set of coupled Landau-Lifshitz
equations for the ferromagnetic layers. Higher order terms in the
non-equilibrium exchange coupling allow the system to evolve to its
steady-state configuration.Comment: 8 pages, 2 figure. Submitted to Phys. Rev.
Reduction of the Three Dimensional Schrodinger Equation for Multilayered Films
In this paper, we present a method for reducing the three dimensional
Schrodinger equation to study confined metallic states, such as quantum well
states, in a multilayer film geometry. While discussing some approximations
that are employed when dealing with the three dimensionality of the problem, we
derive a one dimensional equation suitable for studying such states using an
envelope function approach. Some applications to the Cu/Co multilayer system
with regard to spin tunneling/rotations and angle resolved photoemission are
discussed.Comment: 14 pages, 1 figur
Magnetic exchange interaction induced by a Josephson current
We show that a Josephson current flowing through a
ferromagnet-normal-metal-ferromagnet trilayer connected to two superconducting
electrodes induces an equilibrium exchange interaction between the magnetic
moments of the ferromagnetic layers. The sign and magnitude of the interaction
can be controlled by the phase difference between the order parameters of the
two superconductors. We present a general framework to calculate the Josephson
current induced magnetic exchange interaction in terms of the scattering
matrices of the different layers. The effect should be observable as the
periodic switching of the relative orientation of the magnetic moments of the
ferromagnetic layers in the ac Josephson effect.Comment: 12 pages, 7 figure
A self-consistent treatment of non-equilibrium spin torques in magnetic multilayers
It is known that the transfer of spin angular momenta between current
carriers and local moments occurs near the interface of magnetic layers when
their moments are non-collinear. However, to determine the magnitude of the
transfer, one should calculate the spin transport properties far beyond the
interface regions. Based on the spin diffusion equation, we present a
self-consistent approach to evaluate the spin torque for a number of layered
structures. One of the salient features is that the longitudinal and transverse
components of spin accumulations are inter-twined from one layer to the next,
and thus, the spin torque could be significantly amplified with respect to
treatments which concentrate solely on the transport at the interface due to
the presence of the much longer longitudinal spin diffusion length. We conclude
that bare spin currents do not properly estimate the spin angular momentum
transferred between to the magnetic background; the spin transfer that occurs
at interfaces should be self-consistently determined by embedding it in our
globally diffuse transport calculations.Comment: 21 pages, 6 figure
Current and Spin-Torque in Double Tunnel Barrier Ferromagnet - Superconductor - Ferromagnet Systems
We calculate the current and the spin-torque in small symmetric double tunnel
barrier ferromagnet - superconductor - ferromagnet (F-S-F) systems.
Spin-accumulation on the superconductor governs the transport properties when
the spin-flip relaxation time is longer than the transport dwell time. In the
elastic transport regime, it is demonstrated that the relative change in the
current (spin-torque) for F-S-F systems equals the relative change in the
current (spin-torque) for F-N-F systems upon changing the relative
magnetization direction of the two ferromagnets. This differs from the results
in the inelastic transport regime where spin-accumulation suppresses the
superconducting gap and dramatically changes the magnetoresistance [S.
Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)]. The
experimental relevance of the elastic and inelastic transport regimes,
respectively, as well as the reasons for the change in the transport properties
are discussed.Comment: 7 page
Theory of Current-Induced Magnetization Precession
We solve appropriate drift-diffusion and Landau-Lifshitz-Gilbert equations to
demonstrate that unpolarized current flow from a non-magnet into a ferromagnet
can produce a precession-type instability of the magnetization. The fundamental
origin of the instability is the difference in conductivity between majority
spins and minority spins in the ferromagnet. This leads to spin accumulation
and spin currents that carry angular momentum across the interface. The
component of this angular momentum perpendicular to the magnetization drives
precessional motion that is opposed by Gilbert damping. Neglecting magnetic
anisotropy and magnetostatics, our approximate analytic and exact numerical
solutions using realistic values for the material parameters show (for both
semi-infinite and thin film geometries) that a linear instability occurs when
both the current density and the excitation wave vector parallel to the
interface are neither too small nor too large. For many aspects of the problem,
the variation of the magnetization in the direction of the current flows makes
an important contribution.Comment: Submitted to Physical Review
Edge states of graphene bilayer strip
The electronic structure of the zig-zag bilayer strip is analyzed. The
electronic spectra of the bilayer strip is computed. The dependence of the edge
state band flatness on the bilayer width is found. The density of states at the
Fermi level is analytically computed. It is shown that it has the singularity
which depends on the width of the bilayer strip. There is also asymmetry in the
density of states below and above the Fermi energy.Comment: 9 page
Spin pumping and magnetization dynamics in metallic multilayers
We study the magnetization dynamics in thin ferromagnetic films and small
ferromagnetic particles in contact with paramagnetic conductors. A moving
magnetization vector causes \textquotedblleft pumping\textquotedblright of
spins into adjacent nonmagnetic layers. This spin transfer affects the
magnetization dynamics similar to the Landau-Lifshitz-Gilbert phenomenology.
The additional Gilbert damping is significant for small ferromagnets, when the
nonmagnetic layers efficiently relax the injected spins, but the effect is
reduced when a spin accumulation build-up in the normal metal opposes the spin
pumping. The damping enhancement is governed by (and, in turn, can be used to
measure) the mixing conductance or spin-torque parameter of the
ferromagnet--normal-metal interface. Our theoretical findings are confirmed by
agreement with recent experiments in a variety of multilayer systems.Comment: 10 pages, 6 figure
Magnetization relaxation in (Ga,Mn)As ferromagnetic semiconductors
We describe a theory of Mn local-moment magnetization relaxation due to p-d
kinetic-exchange coupling with the itinerant-spin subsystem in the
ferromagnetic semiconductor (Ga,Mn)As alloy. The theoretical Gilbert damping
coefficient implied by this mechanism is calculated as a function of Mn moment
density, hole concentration, and quasiparticle lifetime. Comparison with
experimental ferromagnetic resonance data suggests that in annealed strongly
metallic samples, p-d coupling contributes significantly to the damping rate of
the magnetization precession at low temperatures. By combining the theoretical
Gilbert coefficient with the values of the magnetic anisotropy energy, we
estimate that the typical critical current for spin-transfer magnetization
switching in all-semiconductor trilayer devices can be as low as .Comment: 4 pages, 2 figures, submitted to Rapid Communication
Magnetic Scanning Tunneling Microscopy with a Two-Terminal Non-Magnetic Tip: Quantitative Results
We report numerical simulation result of a recently proposed \{P. Bruno,
Phys. Rev. Lett {\bf 79}, 4593, (1997)\} approach to perform magnetic scanning
tunneling microscopy with a two terminal non-magnetic tip. It is based upon the
spin asymmetry effect of the tunneling current between a ferromagnetic surface
and a two-terminal non-magnetic tip. The spin asymmetry effect is due to the
spin-orbit scattering in the tip. The effect can be viewed as a Mott scattering
of tunneling electrons within the tip. To obtain quantitative results we
perform numerical simulation within the single band tight binding model, using
recursive Green function method and Landauer-B\"uttiker formula for
conductance. A new model has been developed to take into account the spin-orbit
scattering off the impurities within the single-band tight-binding model. We
show that the spin-asymmetry effect is most prominent when the device is in
quasi-ballistic regime and the typical value of spin asymmetry is about 5%.Comment: 5 pages, Late
- …