38 research outputs found

    Developing Carrier Complexes for “Caged NO”: RuCl3(NO)(H2O)2 Complexes of Dipyridylamine, (dpaH), N,N,N'N'-Tetrakis (2-Pyridyl) Adipamide, (tpada), and (2-Pyridylmethyl) Iminodiacetate, (pida2-)

    Get PDF
    Delivery agents which can carry the {Ru(NO)}6 chromophore (“caged NO”) are desired for vasodilation and for photodynamic therapy of tumors. Toward these goals, complexes derived from [RuCl3(NO)(H2O)2]= (1) have been prepared using dipyridylamine (dpaH) as mono and bis adducts, [Ru(NO)Cl3(dpaH)] = (2) and [Ru(NO)Cl(dpaH)2]Cl2 = (3). The dpaH ligands coordinate cis to the Ru(NO) axis.The mono derivative is a model for a potential DNA groove-spanning binuclear complex {[RuNO)Cl3]2(tpada)} = (4) which has two DNA-coordinating RuII centers, photo-labile {Ru(NO)}6 sites, and a groove-spanning tether moiety.The binuclear assembly is prepared from the tethered dipyridylamine ligand N,N,N',N'-tetrakis(2-pyridylmethyl)adipamide (tpada) which has recently been shown to provide a binuclear carrier complex suited to transporting RuII and PdII agents. A related complex, [Ru(NO)Cl(pida)] = (5) with the {Ru(NO)}6 moiety bound to (2-pyridylmethyl) iminodiacetate (pida2-) is also characterized as a potential “caged NO” carrier. Structural information concerning the placement of the pyridyl donor groups relative to the {Ru(NO)}6 unit has been obtained from 1H and 13C NMR and infrared methods, noting that a pyridyl donor trans to NO+ causes “trans strengthening” of this ligand for [Ru(NO)Cl(pida)], whereas placement of pyridyl groups cis to NO+ causes a weakening of the N-O bond and a lower NO stretching frequency in the dpa-based complexes

    ФОРМИРОВАНИЕ ПРОЕКТИВНОГО ПОКРЫТИЯ ГАЗОННОГО ТРАВОСТОЯ ПРИ ПРИМЕНЕНИИ МИНЕРАЛЬНЫХ И КРЕМНИЙСОДЕРЖАЩИХ УДОБРЕНИЙ

    Get PDF
    Silicon containing fertilizer “Siliplant” and mineral fertilizers are established to influence ornamental traits of lawn herbage. Increased projective covering of lawn herbage – meadow grass and red fes-cue – is marked with the preparation “Siliplant” and mineral fertilizers applied, particularly with their joint application. In the first and second years of research in dry and excessively humid vegetation periods the optimal results were obtained through the joint treatment with mineral fertilizers and the preparation “Siliplant”: the projective covering increased in the year of sowing by averaged 27.5 % in meadow grass and 25 % in red fescue versus the control, in the second year the covering went up by averaged 19.7 and 8.44 %, respectively. Mineral fertilizers applied increased the projective covering in the year of sowing on average by 22.5 % in meadow grass and by 20 % in red fescue, in the second year they did by 14.7 % and 6.25 %, respectively. The treatment with the silicon-containing preparation “Siliplant” increased the projective covering in the year of sowing by averaged 15 % in meadow grass and by 7.5 % in red fescue; in the second vegetation period the averaged effect of the treatment was by 6.58 and 1.51 % higher, respectively.Установлено влияние кремнийсодержащего удобрения «Силиплант» и минеральных удобрений на декоративные качества газонного травостоя. Отмечено увеличение проективного покрытия газонных травостоев мятлика лугового и овсяницы красной при применении препарата «Силиплант» и минеральных удобрений, особенно при их совместном использовании. В  первый и второй годы исследований при засушливом и избыточно влажном вегетационном периоде оптимальные результаты получены при применении минеральных удобрений совместно с препаратом «Силиплант»: проективное покрытие увеличивалось в год посева в среднем на 27,5% у мятлика лугового и на 25% у овсяницы красной по отношению к контролю, во второй год – на 19,7 и 8,44% соответственно. Применение минеральных удобрений увеличивало проективное покрытие в год посева в среднем на 22,5% у мятлика лугового и на 20% у овсяницы красной, во второй год на 14,7 и 6,25% соответственно. Применение кремнийсодержащего препарата «Силиплант» увеличивало проективное покрытие в год посева в среднем на 15% у мятлика лугового и на 7,5% у овсяницы красной; во втором вегетационном периоде на 6,58 и на 1,51% соответственно

    Biomimetic Synthesis of Nanoparticles

    No full text
    Biological systems provide numerous examples of highly controlled biomineralization processes that result in stabilized nanoparticles with superior optical properties, crystallinity, dispersity, and morphology. This is best exemplified by the selective mineralization of ferrihydrite (FeOOH·3H 2 O) as a labile source of iron within the iron storage protein ferritin. Consequently, these processes have inspired the use of biomolecular templates to mediate and mimic the synthesis of nano‐materials with a remarkable degree of success. Biomimetic approaches to nanoparticle synthesis include the use of single amino acids, small synthetic peptides (3–18 residues), phage displayed peptides, combinatorial libraries, native proteins, and plant viruses. In the following, we present these biologically inspired templates and methodologies; in addition to describing nanoparticle characterization, resultant properties, and implications for the nanoscale synthesis of materials
    corecore