7 research outputs found
Micafungin Is an Efficient Treatment of Multi Drug-Resistant Candida glabrata Urosepsis: A Case Report
Candiduria is a common nosocomial infection in hospitalized patients, which may progress into life-threatening candidemia. Successful treatment of urosepsis requires early and effective antifungal therapy, while the available agents within three pharmacological classes each have characteristic pharmacokinetics and side effect profiles. Moreover, treatment of Candida spp. infections is becoming challenging due to increasing multi drug-resistance. Here, we present a case of candidemia resulting from a multi drug-resistant C. glabrata infection of the urinary tract. Due to resistance to fluconazole and a contraindication for amphotericin B, micafungin was used in the treatment, regardless of its unfavorable pharmacokinetic properties. Our study showed that despite the expected low levels in the urinary tract, micafungin was successful in the eradication of C. glabrata allowing full recovery of the patient. Thus, micafungin should be considered in the management of urosepsis caused by sensitive Candida spp
Expression of cholinesterases and their anchoring proteins in rat heart
Acetylcholine (ACh)-mediated vagal transmission as well as nonneuronal ACh release are considered cardioprotective in pathological situations with increased sympathetic drive such as ischemia–reperfusion and cardiac remodeling. ACh action is terminated by hydrolysis by the cholinesterases (ChEs), acetylcholinesterase, and butyrylcholinesterase. Both ChEs exist in multiple molecular variants either soluble or anchored by specific anchoring proteins like collagen Q (ColQ) anchoring protein and proline-rich membrane anchoring protein (PRiMA). Here we assessed the expression of specific ChE molecular forms in different heart compartments using RT-qPCR. We show that both ChEs are expressed in all heart compartments but display different expression patterns. The acetylcholinesterase-T variant together with PRiMA and ColQ is predominantly expressed in rat atria. Butylcholinesterase is found in all heart compartments and is accompanied by both PRiMA and ColQ anchors. Its expression in the ventricular system suggests involvement in the nonneuronal cholinergic system. Additionally, two PRiMA variants are detected throughout the rat heart.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Aerobic-Strength Exercise Improves Metabolism and Clinical State in Parkinson’s Disease Patients
Regular exercise ameliorates motor symptoms in Parkinson’s disease (PD). Here, we aimed to provide evidence that exercise brings additional benefits to the whole-body metabolism and skeletal muscle molecular and functional characteristics, which might help to explain exercise-induced improvements in the clinical state. 3-months supervised endurance/strength training was performed in early/mid-stage PD patients and age/gender-matched individuals (n = 11/11). The effects of exercise on resting energy expenditure (REE), glucose metabolism, adiposity, and muscle energy metabolism (31P-MRS) were evaluated and compared to non-exercising PD patients. Two muscle biopsies were taken to determine intervention-induced changes in fiber type, mitochondrial content, and expression of genes related to muscle energy metabolism, as well as proliferative and regenerative capacity. Exercise improved the clinical disability score (MDS-UPDRS), bradykinesia, balance, walking speed, REE, and glucose metabolism and increased muscle expression of energy sensors (AMPK). However, the exercise-induced increase in muscle mass/strength, mitochondrial content, type II fiber size, and postexercise phosphocreatine (PCr) recovery (31P-MRS) were found only in controls. Nevertheless, MDS-UPDRS was associated with muscle AMPK and mechano-growth factor (MGF) expression. Improvements in fasting glycemia were positively associated with muscle function and the expression of Sirt1 and Cox7a1, and the parameters of fitness/strength were positively associated with the expression of MyHC2, MyHC7, and MGF. Moreover, reduced bradykinesia was associated with better muscle metabolism (maximal oxidative capacity and postexercise PCr recovery; 31P-MRS). Exercise training improved the clinical state in early/mid-stage Parkinson’s disease patients, including motor functions and whole-body metabolism. Although the adaptive response to exercise in PD was different from that of controls, exercise-induced improvements in the PD clinical state were associated with specific adaptive changes in muscle functional, metabolic, and molecular characteristics.Clinical Trial Registrationwww.ClinicalTrials.gov, identifier NCT02253732
Aerobic-Strength Exercise Improves Metabolism and Clinical State in Parkinson’s Disease Patients
Regular exercise ameliorates motor symptoms in Parkinson's disease (PD). Here, we aimed to provide evidence that exercise brings additional benefits to the whole-body metabolism and skeletal muscle molecular and functional characteristics, which might help to explain exercise-induced improvements in the clinical state. 3-months supervised endurance/strength training was performed in early/mid-stage PD patients and age/gender-matched individuals (n = 11/11). The effects of exercise on resting energy expenditure (REE), glucose metabolism, adiposity, and muscle energy metabolism (31P-MRS) were evaluated and compared to non-exercising PD patients. Two muscle biopsies were taken to determine intervention-induced changes in fiber type, mitochondrial content, and expression of genes related to muscle energy metabolism, as well as proliferative and regenerative capacity. Exercise improved the clinical disability score (MDS-UPDRS), bradykinesia, balance, walking speed, REE, and glucose metabolism and increased muscle expression of energy sensors (AMPK). However, the exercise-induced increase in muscle mass/strength, mitochondrial content, type II fiber size, and postexercise phosphocreatine (PCr) recovery (31P-MRS) were found only in controls. Nevertheless, MDS-UPDRS was associated with muscle AMPK and mechano-growth factor (MGF) expression. Improvements in fasting glycemia were positively associated with muscle function and the expression of Sirt1 and Cox7a1, and the parameters of fitness/strength were positively associated with the expression of MyHC2, MyHC7, and MGF. Moreover, reduced bradykinesia was associated with better muscle metabolism (maximal oxidative capacity and postexercise PCr recovery; 31P-MRS). Exercise training improved the clinical state in early/mid-stage Parkinson's disease patients, including motor functions and whole-body metabolism. Although the adaptive response to exercise in PD was different from that of controls, exercise-induced improvements in the PD clinical state were associated with specific adaptive changes in muscle functional, metabolic, and molecular characteristics.www.ClinicalTrials.gov, identifier NCT02253732