72 research outputs found

    PI3K/mTOR inhibition can impair tumor invasion and metastasis in vivo despite a lack of antiproliferative action in vitro: implications for targeted therapy

    Get PDF
    Oncogenic PI3K/mTOR activation is frequently observed in human cancers and activates cell motility via p27 phosphorylations at T157 and T198. Here we explored the potential for a novel PI3K/mTOR inhibitor to inhibit tumor invasion and metastasis. An MDA-MB-231 breast cancer line variant, MDA-MB-231-1833, with high metastatic bone tropism, was treated with a novel catalytic PI3K/mTOR inhibitor, PF-04691502, at nM doses that did not impair proliferation. Effects on tumor cell motility, invasion, p27 phosphorylation, localization, and bone metastatic outgrowth were assayed. MDA-MB-231-1833 showed increased PI3K/mTOR activation, high levels of cytoplasmic p27pT157pT198 and increased cell motility and invasion in vitro versus parental. PF-04691502 treatment, at a dose that did not affect proliferation, reduced total and cytoplasmic p27, decreased p27pT157pT198 and restored cell motility and invasion to levels seen in MDA-MB-231. p27 knockdown in MDA-MB-231-1833 phenocopied PI3K/mTOR inhibition, whilst overexpression of the phosphomimetic mutant p27T157DT198D caused resistance to the anti-invasive effects of PF-04691502. Pre-treatment of MDA-MB-231-1833 with PF-04691502 significantly impaired metastatic tumor formation in vivo, despite lack of antiproliferative effects in culture and little effect on primary orthotopic tumor growth. A further link between cytoplasmic p27 and metastasis was provided by a study of primary human breast cancers which showed cytoplasmic p27 is associated with increased lymph nodal metastasis and reduced survival. Novel PI3K/mTOR inhibitors may oppose tumor metastasis independent of their growth inhibitory effects, providing a rationale for clinical investigation of PI3K/mTOR inhibitors in settings to prevent micrometastasis. In primary human breast cancers, cytoplasmic p27 is associated with worse outcomes and increased nodal metastasis, and may prove useful as a marker of both PI3K/mTOR activation and PI3K/mTOR inhibitor efficacy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10549-012-2389-6) contains supplementary material, which is available to authorized users

    The Major Pre- and Postmenopausal Estrogens Play Opposing Roles in Obesity-Driven Mammary Inflammation and Breast Cancer Development

    Get PDF
    Many inflammation-associated diseases, including cancers, increase in women after menopause and with obesity. In contrast to anti-inflammatory actions of 17β-estradiol, we find estrone, which dominates after menopause, is pro-inflammatory. In human mammary adipocytes, cytokine expression increases with obesity, menopause, and cancer. Adipocyte:cancer cell interaction stimulates estrone- and NFκB-dependent pro-inflammatory cytokine upregulation. Estrone- and 17β-estradiol-driven transcriptomes differ. Estrone:ERα stimulates NFκB-mediated cytokine gene induction; 17β-estradiol opposes this. In obese mice, estrone increases and 17β-estradiol relieves inflammation. Estrone drives more rapid ER+ breast cancer growth in vivo. HSD17B14, which converts 17β-estradiol to estrone, associates with poor ER+ breast cancer outcome. Estrone and HSD17B14 upregulate inflammation, ALDH1 activity, and tumorspheres, while 17β-estradiol and HSD17B14 knockdown oppose these. Finally, a high intratumor estrone:17β-estradiol ratio increases tumor-initiating stem cells and ER+ cancer growth in vivo. These findings help explain why postmenopausal ER+ breast cancer increases with obesity, and offer new strategies for prevention and therapy.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 84510

    Tamoxifen may prevent both ER+ and ER- breast cancers and select for ER- carcinogenesis: an alternative hypothesis

    Get PDF
    INTRODUCTION: Breast Cancer Prevention Trial (BCPT) and Multiple Outcomes of Raloxifene (MORE) data have been interpreted to indicate that tamoxifen reduces the risk of ER+ but not ER- breast carcinogenesis. We explored whether these data also support an alternative hypothesis, that tamoxifen influences the natural history of both ER+ and ER- cancers, that it may be equally effective in abrogating or delaying ER- and ER+ carcinogenesis, and place selection pressure, in some cases, for the outgrowth of ER- cancers. METHODS: BCPT and MORE data were used to investigate whether: first, tamoxifen could reduce equally the emergence of ER- and ER+ tumors; and second, tamoxifen could select a fraction of emerging ER+ cancers and promote their transformation to ER- cancers. Assuming that some proportion, Z, of ER+ tumors becomes ER- after tamoxifen exposure and that the risk reduction for both ER- and ER+ tumors is equal, we solved for both the transformation rate and the risk reduction rate. RESULTS: If tamoxifen equally reduces the incidence of ER+ and ER- tumors by 60%, the BCPT results are achieved with a transformation of approximately Z = 20% of ER+ to ER- tumors. Validation with MORE data using an equal risk reduction of 60% associated with tamoxifen produces an almost identical transformation rate Z of 23%. CONCLUSION: Data support an alternative hypothesis that tamoxifen may promote ER- carcinogenesis from a precursor lesion that would otherwise have developed as ER+ without tamoxifen selection

    PTEN deficiency: a role in mammary carcinogenesis

    Get PDF
    The PTEN gene is often mutated in primary human tumors and cell lines, but the low rate of somatic PTEN mutation in human breast cancer has led to debate over the role of this tumor suppressor in this disease. The involvement of PTEN in human mammary oncogenesis has been implicated from studies showing that germline PTEN mutation in Cowden disease predisposes to breast cancer, the frequent loss of heterozygosity at the PTEN locus, and reduced PTEN protein levels in sporadic breast cancers. To assay the potential contribution of PTEN loss in breast tumor promotion, Li et al. [1] crossed Pten heterozygous mice with mouse mammary tumor virus-Wnt-1 transgenic (Wnt-1 TG, Pten+/-) mice. Mammary ductal carcinoma developed earlier in Wnt-1 TG, Pten+/- mice than in mice bearing either genetic change alone, and showed frequent loss of the remaining wild-type PTEN allele. These data indicate a role for PTEN in breast tumorigenesis in an in vivo model

    Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression

    No full text
    Obesity is a problem of epidemic proportions in many developed nations. Increased body mass index and obesity are associated with a significantly worse outcome for many cancers. Breast cancer risk in the postmenopausal setting and poor disease outcome for all patients is significantly augmented in overweight and obese individuals. The expansion of fat tissue involves a complex interaction of endocrine factors known as adipokines and cytokines. High cytokine levels in primary breast cancers and in the circulation of affected patients have been associated with poor outcome. This review summarizes the how cytokine production in obese adipose tissue creates a chronic inflammatory microenvironment that favors tumor cell motility, invasion, and epithelial-mesenchymal transition to enhance the metastatic potential of tumor cells. Many of the cytokines associated with a proinflammatory state are not only upregulated in obese adipose tissue but may also stimulate the self-renewal of cancer stem cells. Thus, enhanced cytokine production in obese adipose tissue may serve both as a chemoattractant for invading cancers and to augment their malignant potential. These new mechanistic insights suggest that the current obesity epidemic will presage a significant increase in cancer incidence, morbidity, and mortality in the next few decades
    • …
    corecore