67 research outputs found

    Expression of an endotoxin-free S-layer/allergen fusion protein in gram-positive Bacillus subtilis 1012 for the potential application as vaccines for immunotherapy of atopic allergy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic fusion of the major birch pollen allergen (Bet v1) to bacterial surface-(S)-layer proteins resulted in recombinant proteins exhibiting reduced allergenicity as well as immunomodulatory capacity. Thus, S-layer/allergen fusion proteins were considered as suitable carriers for new immunotherapeutical vaccines for treatment of Type I hypersensitivity. Up to now, endotoxin contamination of the fusion protein which occurred after isolation from the gram-negative expression host <it>E. coli </it>had to be removed by an expensive and time consuming procedure. In the present study, in order to achieve expression of pyrogen-free, recombinant S-layer/allergen fusion protein and to study the secretion of a protein capable to self-assemble, the S-layer/allergen fusion protein rSbpA/Bet v1 was produced in the gram-positive organism <it>Bacillus subtilis </it>1012.</p> <p>Results</p> <p>The chimaeric gene encoding the S-layer protein SbpA of <it>Lysinibacillus sphaericus </it>CCM 2177 as well as Bet v1 was cloned and expressed in <it>B. subtilis </it>1012. For that purpose, the <it>E. coli-B. subtilis </it>shuttle vectors pHT01 for expression in the <it>B. subtilis </it>cytoplasm and pHT43 for secretion of the recombinant fusion protein into the culture medium were used. As shown by western blot analysis, immediately after induction of expression, <it>B. subtilis </it>1012 was able to secret rSbpA/Bet v1 mediated by the signal peptide amyQ of <it>Bacillus amyloliquefaciens</it>. Electron microscopical investigation of the culture medium revealed that the secreted fusion protein was able to form self-assembly products in suspension but did not recrystallize on the surface of the <it>B. subtilis </it>cells. The specific binding mechanism between the N-terminus of the S-layer protein and a secondary cell wall polymer (SCWP), located in the peptidoglycan-containing sacculi of <it>Ly. sphaericus </it>CCM 2177, could be used for isolation and purification of the secreted fusion protein from the culture medium. Immune reactivity of rSbpA/Bet v1 could be demonstrated in immunoblotting experiments with Bet v1 specific IgE containing serum samples from patients suffering birch pollen allergy.</p> <p>Conclusions</p> <p>The impact of this study can be seen in the usage of a gram-positive organism for the production of pyrogen-free self-assembling recombinant S-layer/allergen fusion protein with great relevance for the development of vaccines for immunotherapy of atopic allergy.</p

    Identification and characterization of domains responsible for self-assembly and cell wall binding of the surface layer protein of Lactobacillus brevis ATCC 8287

    Get PDF
    Background: Lactobacillus brevis ATCC 8287 is covered by a regular surface (S-) layer consisting of a 435 amino acid protein SlpA. This protein is completely unrelated in sequence to the previously characterized S-layer proteins of Lactobacillus acidophilus group. Results: In this work, the self-assembly and cell wall binding domains of SlpA were characterized. The C-terminal self-assembly domain encompassed residues 179435 of mature SlpA, as demonstrated by the ability of N-terminally truncated recombinant SlpA to form a periodic structure indistinguishable from that formed by full length SlpA. Furthermore, a trypsin degradation analysis indicated the existence of a protease resistant C-terminal domain of 214 amino acids. By producing a set of C-terminally truncated recombinant SlpA (rSlpA) proteins the cell wall binding region was mapped to the N-terminal part of SlpA, where the first 145 amino acids of mature SlpA alone were sufficient for binding to isolated cell wall fragments of L. brevis ATCC 8287. The binding of full length rSlpA to the cell walls was not affected by the treatment of the walls with 5% trichloroacetic acid (TCA), indicating that cell wall structures other than teichoic acids are involved, a feature not shared by the Lactobacillus acidophilus group S-layer proteins characterized so far. Conserved carbohydrate binding motifs were identified in the positively charged N-terminal regions of six Lactobacillus brevis S-layer proteins. Conclusion: This study identifies SlpA as a two-domain protein in which the order of the functional domains is reversed compared to other characterized Lactobacillus S-layer proteins, and emphasizes the diversity of potential cell wall receptors despite similar carbohydrate binding sequence motifs in Lactobacillus S-layer proteins.(VLID)90437

    S-Layer Ultrafiltration Membranes

    No full text
    Monomolecular arrays of protein subunits forming surface layers (S-layers) are the most common outermost cell envelope components of prokaryotic organisms (bacteria and archaea). Since S-layers are periodic structures, they exhibit identical physicochemical properties for each constituent molecular unit down to the sub-nanometer level. Pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes. The functional groups on the surface and in the pores of the S-layer protein lattice are accessible for chemical modifications and for binding functional molecules in very precise fashion. S-layer ultrafiltration membranes (SUMs) can be produced by depositing S-layer fragments as a coherent (multi)layer on microfiltration membranes. After inter- and intramolecular crosslinking of the composite structure, the chemical and thermal resistance of these membranes was shown to be comparable to polyamide membranes. Chemical modification and/or specific binding of differently sized molecules allow the tuning of the surface properties and molecular sieving characteristics of SUMs. SUMs can be utilized as matrices for the controlled immobilization of functional biomolecules (e.g., ligands, enzymes, antibodies, and antigens) as required for many applications (e.g., biosensors, diagnostics, enzyme- and affinity-membranes). Finally, SUM represent unique supporting structures for stabilizing functional lipid membranes at meso- and macroscopic scale

    Patterns in Nature—S-Layer Lattices of Bacterial and Archaeal Cells

    No full text
    Bacterial surface layers (S-layers) have been observed as the outermost cell envelope component in a wide range of bacteria and most archaea. S-layers are monomolecular lattices composed of a single protein or glycoprotein species and have either oblique, square or hexagonal lattice symmetry with unit cell dimensions ranging from 3 to 30 nm. They are generally 5 to 10 nm thick (up to 70 nm in archaea) and represent highly porous protein lattices (30–70% porosity) with pores of uniform size and morphology in the range of 2 to 8 nm. Since S-layers can be considered as one of the simplest protein lattices found in nature and the constituent units are probably the most abundantly expressed proteins on earth, it seems justified to briefly review the different S-layer lattice types, the need for lattice imperfections and the discussion of S-layers from the perspective of an isoporous protein network in the ultrafiltration region. Finally, basic research on S-layers laid the foundation for applications in biotechnology, synthetic biology, and biomimetics

    S-Layer Protein Self-Assembly

    Get PDF
    Abstract: Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports

    Evidence for the glycoprotein nature of the crystalline cell wall surface layer of Bacillus stearothermophilus strain NRS2004/3a

    Get PDF
    AbstractThe surface layer of Bacillus stearothermophilus strain NRS2004/3a was isolated and chemically characterized. The results of these initial studies lead to the conclusion that the cell surface protein is glycosylated

    Crystalline S-Layer Protein Monolayers Induce Water Turbulences on the Nanometer Scale

    No full text
    Bacterial surface layers (S-layers) have been observed as the outermost cell envelope component in a wide range of bacteria and most archaea. They are one of the most common prokaryotic cell surface structures and cover the cells completely. It is assumed that S-layers provide selection advantages to prokaryotic cells in their natural habitats since they act as protective envelopes, as structures involved in cell adhesion and surface recognition, as molecular or ion traps, and as molecular sieves in the ultrafiltration range. In order to contribute to the question of the function of S-layers for the cell, we merged high-resolution cryo-EM and small-angle X-ray scattering datasets to build a coarse-grained functional model of the S-layer protein SbpA from Lysinibacillus sphaericus ATCC 4525. We applied the Navier–Stokes and the Poisson equations for a 2D section through the pore region in the self-assembled SbpA lattice. We calculated the flow field of water, the vorticity, the electrostatic potential, and the electric field of the coarse-grained model. From calculated local changes in the flow profile, evidence is provided that both the characteristic rigidity of the S-layer and the charge distribution determine its rheological properties. The strength of turbulence and pressure near the S-layer surface in the range of 10 to 50 nm thus support our hypothesis that the S-layer, due to its highly ordered repetitive crystalline structure, not only increases the exchange rate of metabolites but is also responsible for the remarkable antifouling properties of the cell surface. In this context, studies on the structure, assembly and function of S-layer proteins are promising for various applications in nanobiotechnology, biomimetics, biomedicine, and molecular nanotechnology
    corecore