35 research outputs found

    Gaussian distribution of LMOV numbers

    Full text link
    Recent advances in knot polynomial calculus allowed us to obtain a huge variety of LMOV integers counting degeneracy of the BPS spectrum of topological theories on the resolved conifold and appearing in the genus expansion of the plethystic logarithm of the Ooguri-Vafa partition functions. Already the very first look at this data reveals that the LMOV numbers are randomly distributed in genus (!) and are very well parameterized by just three parameters depending on the representation, an integer and the knot. We present an accurate formulation and evidence in support of this new puzzling observation about the old puzzling quantities. It probably implies that the BPS states, counted by the LMOV numbers can actually be composites made from some still more elementary objects.Comment: 23 page

    Eigenvalue hypothesis for multi-strand braids

    Full text link
    Computing polynomial form of the colored HOMFLY-PT for non-arborescent knots obtained from three or more strand braids is still an open problem. One of the efficient methods suggested for the three-strand braids relies on the eigenvalue hypothesis which uses the Yang-Baxter equation to express the answer through the eigenvalues of the R{\cal R}-matrix. In this paper, we generalize the hypothesis to higher number of strands in the braid where commuting relations of non-neighbouring R\mathcal{R} matrices are also incorporated. By solving these equations, we determine the explicit form for R\mathcal{R}-matrices and the inclusive Racah matrices in terms of braiding eigenvalues (for matrices of size up to 6 by 6). For comparison, we briefly discuss the highest weight method for four-strand braids carrying fundamental and symmetric rank two SUq(N)SU_q(N) representation. Specifically, we present all the inclusive Racah matrices for representation [2][2] and compare with the matrices obtained from eigenvalue hypothesis.Comment: 23 page

    Quantum Racah matrices up to level 3 and multicolored link invariants

    Full text link
    This paper is a next step in the project of systematic description of colored knot and link invariants started in previous papers. In this paper, we managed to explicitly find the inclusive Racah matrices, i.e. the whole set of mixing matrices in channels R1R2R3QR_1\otimes R_2\otimes R_3\longrightarrow Q with all possible QQ, for R3|R|\leq 3. The calculation is made possible by use of the highest weight method. The result allows one to evaluate and investigate colored polynomials for arbitrary 3-strand knots and links and to check the corresponding eigenvalue conjecture. Explicit answers for Racah matrices and colored polynomials for 3-strand knots up to 10 crossings are available at http://knotebook.org. Using the obtained inclusive Racah matrices, we also calculated the exclusive Racah matrices with the help of trick earlier suggested in the case of knots. This method is proved to be effective and gives the exclusive Racah matrices earlier obtained by another method.Comment: 29 pages, 3 figure

    Differential expansion for link polynomials

    Full text link
    The differential expansion is one of the key structures reflecting group theory properties of colored knot polynomials, which also becomes an important tool for evaluation of non-trivial Racah matrices. This makes highly desirable its extension from knots to links, which, however, requires knowledge of the 6j6j-symbols, at least, for the simplest triples of non-coincident representations. Based on the recent achievements in this direction, we conjecture a shape of the differential expansion for symmetrically-colored links and provide a set of examples. Within this study, we use a special framing that is an unusual extension of the topological framing from knots to links. In the particular cases of Whitehead and Borromean rings links, the differential expansions are different from the previously discovered.Comment: 11 page
    corecore