29 research outputs found

    Racah matrices and hidden integrability in evolution of knots

    Get PDF
    We construct a general procedure to extract the exclusive Racah matrices S and \bar S from the inclusive 3-strand mixing matrices by the evolution method and apply it to the first simple representations R =[1], [2], [3] and [2,2]. The matrices S and \bar S relate respectively the maps (R\otimes R)\otimes \bar R\longrightarrow R with R\otimes (R \otimes \bar R) \longrightarrow R and (R\otimes \bar R) \otimes R \longrightarrow R with R\otimes (\bar R \otimes R) \longrightarrow R. They are building blocks for the colored HOMFLY polynomials of arbitrary arborescent (double fat) knots. Remarkably, the calculation realizes an unexpected integrability property underlying the evolution matrices.Comment: 16 page

    Gaussian distribution of LMOV numbers

    Full text link
    Recent advances in knot polynomial calculus allowed us to obtain a huge variety of LMOV integers counting degeneracy of the BPS spectrum of topological theories on the resolved conifold and appearing in the genus expansion of the plethystic logarithm of the Ooguri-Vafa partition functions. Already the very first look at this data reveals that the LMOV numbers are randomly distributed in genus (!) and are very well parameterized by just three parameters depending on the representation, an integer and the knot. We present an accurate formulation and evidence in support of this new puzzling observation about the old puzzling quantities. It probably implies that the BPS states, counted by the LMOV numbers can actually be composites made from some still more elementary objects.Comment: 23 page

    Differential expansion for link polynomials

    Full text link
    The differential expansion is one of the key structures reflecting group theory properties of colored knot polynomials, which also becomes an important tool for evaluation of non-trivial Racah matrices. This makes highly desirable its extension from knots to links, which, however, requires knowledge of the 6j6j-symbols, at least, for the simplest triples of non-coincident representations. Based on the recent achievements in this direction, we conjecture a shape of the differential expansion for symmetrically-colored links and provide a set of examples. Within this study, we use a special framing that is an unusual extension of the topological framing from knots to links. In the particular cases of Whitehead and Borromean rings links, the differential expansions are different from the previously discovered.Comment: 11 page

    Eigenvalue hypothesis for multi-strand braids

    Full text link
    Computing polynomial form of the colored HOMFLY-PT for non-arborescent knots obtained from three or more strand braids is still an open problem. One of the efficient methods suggested for the three-strand braids relies on the eigenvalue hypothesis which uses the Yang-Baxter equation to express the answer through the eigenvalues of the R{\cal R}-matrix. In this paper, we generalize the hypothesis to higher number of strands in the braid where commuting relations of non-neighbouring R\mathcal{R} matrices are also incorporated. By solving these equations, we determine the explicit form for R\mathcal{R}-matrices and the inclusive Racah matrices in terms of braiding eigenvalues (for matrices of size up to 6 by 6). For comparison, we briefly discuss the highest weight method for four-strand braids carrying fundamental and symmetric rank two SUq(N)SU_q(N) representation. Specifically, we present all the inclusive Racah matrices for representation [2][2] and compare with the matrices obtained from eigenvalue hypothesis.Comment: 23 page
    corecore