219 research outputs found
Global atmospheric model for mercury including oxidation by bromine atoms
Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg<sup>0</sup> to Hg<sup>II</sup> and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br) as an alternative Hg<sup>0</sup> oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg<sup>0</sup> oxidant (Hg + Br model) and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O<sub>3</sub> model). We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O<sub>3</sub> models, we add an aqueous photochemical reduction of Hg<sup>II</sup> in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM) concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O<sub>3</sub> models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of Hg<sup>II</sup> deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a<sup>â1</sup>. Summertime events of depleted Hg<sup>0</sup> at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model comparisons to observed wet deposition fluxes of mercury in the US and Europe show general consistency. However the Hg + Br model does not capture the summer maximum over the southeast US because of low subtropical Br concentrations while the Hg + OH/O<sub>3</sub> model does. Vertical profiles measured from aircraft show a decline of Hg<sup>0</sup> above the tropopause that can be captured by both the Hg + Br and Hg + OH/O<sub>3</sub> models, except in Arctic spring where the observed decline is much steeper than simulated by either model; we speculate that oxidation by Cl species might be responsible. The Hg + Br and Hg + OH/O<sub>3</sub> models yield similar global budgets for the cycling of mercury between the atmosphere and surface reservoirs, but the Hg + Br model results in a much larger fraction of mercury deposited to the Southern Hemisphere oceans
Recommended from our members
Air-Sea Exchange in the Global Mercury Cycle
We present results from a new global atmospheric mercury model coupled with a mixed layer slab ocean. The ocean model describes the interactions of the mixed layer with the atmosphere and deep ocean, as well as conversion between elemental, divalent, and nonreactive mercury species. Our global mean aqueous concentrations of 0.07 pM elemental, 0.80 pM reactive, and 1.51 pM total mercury agree with observations. The ocean provides a 14.1 Mmol yrâ1 source of mercury to the atmosphere, at the upper end of previous estimates. Re-emission of previously deposited mercury constitutes 89% of this flux. Ocean emissions are largest in the tropics and downwind of industrial regions. Midlatitude ocean emissions display a large seasonal cycle induced by biological productivity. Oceans contribute 54% (36%) of surface atmospheric mercury in the Southern (Northern) Hemisphere. We find a large net loss of mercury to the deep ocean (8.7 Mmol yrâ1), implying a âŒ0.7%/year increase in deep ocean concentrations.Earth and Planetary SciencesEngineering and Applied Science
Recommended from our members
Origin of aerosol particles in the mid-latitude and subtropical upper troposphere and lowermost stratosphere from cluster analysis of CARIBIC data
The origin of aerosol particles in the upper troposphere and lowermost stratosphere over the Eurasian continent was investigated by applying cluster analysis methods to in situ measured data. Number concentrations of submicrometer aerosol particles and trace gas mixing ratios derived by the CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container) measurement system on flights between Germany and South-East Asia were used for this analysis. Four cluster analysis methods were applied to a test data set and their capability of separating the data points into scientifically reasonable clusters was assessed. The best method was applied to seasonal data subsets for summer and winter resulting in five cluster or air mass types: stratosphere, tropopause, free troposphere, high clouds, and boundary layer influenced. Other source clusters, like aircraft emissions could not be resolved in the present data set with the used methods. While the cluster separation works satisfactory well for the summer data, in winter interpretation is more difficult, which is attributed to either different vertical transport pathways or different chemical lifetimes in both seasons. The geographical distribution of the clusters together with histograms for nucleation and Aitken mode particles within each cluster are presented. Aitken mode particle number concentrations show a clear vertical gradient with the lowest values in the lowermost stratosphere (750â2820 particles/cm3 STP, minimum of the two 25% â and maximum of the two 75%-percentiles of both seasons) and the highest values for the boundary-layer-influenced air (4290â22 760 particles/cm3 STP). Nucleation mode particles are also highest in the boundary-layer-influenced air (1260â29 500 particles/cm3 STP), but are lowest in the free troposphere (0â450 particles/cm3 STP). The given submicrometer particle number concentrations represent the first large-scale seasonal data sets for the upper troposphere and lowermost stratosphere over the Eurasian continent
Recommended from our members
Alkyl nitrates in outflow from North America over the North Atlantic during Intercontinental Transport of Ozone and Precursors 2004
This paper is based on alkyl nitrate measurements made over the North Atlantic as part of the International Consortium for Research on Atmospheric Transport and Transformation (ICARTT). The focus is on the analysis of air samples collected on the UK BAe-146 aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) project, but air samples collected on board the NASA DC-8 and NOAA WP-3D aircraft as part of a Lagrangian experiment are also used. The ratios between the alkyl nitrates and their parent hydrocarbons are compared with those expected from chemical theory. Further, a box model is run to investigate the temporal evolution of the alkyl nitrates in three Lagrangian case studies and compared to observations. The air samples collected during ITOP do not appear to be strongly influenced by oceanic sources, but rather are influenced by emissions from the N.E. United States and from Alaskan fires. There also appears to be a widespread common source of ethyl nitrate and 1-propyl nitrate other than from their parent hydrocarbons. The general agreement between the alkyl nitrate data and photochemical theory suggests that during the first few days of transport from the source region, photochemical production of alkyl nitrates, and thus ozone, had taken place. The observations in the more photochemically processed air masses are consistent with the alkyl nitrate production reactions no longer dominating the peroxy radical self/cross reactions. Further, the results also suggest that the rates of photochemical processing in the Alaskan smoke plumes were small
Pollution events observed during CARIBIC flights in the upper troposphere between South China and the Philippines
A strong pollution episode in the upper troposphere between South China and the Philippines was observed during CARIBIC flights in April 2007. Five pollution events were observed, where enhancements in aerosol and trace gas concentrations including CO, CO, CH, non-methane hydrocarbons (NMHCs) and halocarbons were observed along the flight tracks during four sequential flights. The importance of the contribution of biomass/biofuel burning was investigated using chemical tracers, emission factor analysis, back-trajectory analysis and satellite images. The Indochinese peninsula was identified as the probable source region of biomass/biofuel burning. However, enhancements in the urban/industrial tracer CCl during the events also indicate a substantial contribution from urban anthropogenic emissions. An estimation of the contribution of fossil fuel versus biomass/biofuel to the CO enhancement was made, indicating a biomass/biofuel burning contribution of ~54 to ~92% of the observed CO enhancements. Biomass/biofuel burning was found to be the most important source category during the sampling period
Vertical distribution of mercury, CO, ozone, and aerosol scattering coefficient in the Pacific Northwest during the spring 2006 INTEXâB campaign
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94827/1/jgrd14532.pd
Mercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014-2016
Mercury was measured onboard the IAGOSCARIBIC passenger aircraft from May 2005 until February 2016 during near monthly sequences of mostly four intercontinental flights from Germany to destinations in North and South America, Africa and South and East Asia. Most of these mercury data were obtained using an internal default signal integration procedure of the Tekran instrument but since April 2014 more precise and accurate data were obtained using post-flight manual integration of the instrument raw signal. In this paper we use the latter data. Increased upper tropospheric total mercury (TM) concentrations due to large scale biomass burning were observed in the upper troposphere (UT) at the equator and southern latitudes during the flights to Latin America and South Africa in boreal autumn (SON) and boreal winter (DJF). TM concentrations in the lowermost stratosphere (LMS) decrease with altitude above the thermal tropopause but the gradient is less steep than reported before. Seasonal variation of the vertical TM distribution in the UT and LMS is similar to that of other trace gases with surface sources and stratospheric sinks. Speciation experiments suggest comparable TM and gaseous elementary mercury (GEM) concentrations at and below the tropopause leaving little space for Hg2+ (TM-GEM) being the dominating component of TM here. In the stratosphere significant GEM concentrations were found to exist up to 4 km altitude above the thermal tropopause. Correlations with N2O as a reference tracer suggest stratospheric lifetimes of 72 ± 37 and 74 ± 27 years for TM and GEM, respectively, comparable to the stratospheric lifetime of COS. This coincidence, combined with pieces of evidence from us and other researchers, corroborates the hypothesis that Hg2+ formed by oxidation in the stratosphere attaches to sulfate particles formed mainly by oxidation of COS and is removed with them from the stratosphere by air mass exchange, gravitational sedimentation and cloud scavenging processes
Characterization of non-methane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft
Between April and December 2008 the CARIBIC commercial aircraft conducted monthly measurement flights between Frankfurt, Germany and Chennai, India. These flights covered the period of the Asian summer monsoon (JuneâSeptember), during which enhancements in a number of atmospheric species were observed in the upper troposphere over southwestern Asia. In addition to in situ measurements of trace gases and aerosols, whole air samples were collected during the flights, and these were subsequently analyzed for a suite of trace gases that included a number of C2âC8 non-methane hydrocarbons. Non-methane hydrocarbons are relatively short-lived compounds and the large enhancements in their mixing ratios in the upper troposphere over southwestern Asia during the monsoon, sometimes more than double their spring and fall means, provides qualitative evidence for the influence of convectively uplifted boundary layer air. The particularly large enhancements of the combustion tracers benzene and ethyne, along with the similarity of their ratios with carbon monoxide and emission ratios from the burning of household biofuels, indicate a strong influence of biofuel burning to NMHC emissions in this region. Conversely, the ratios of ethane and propane to carbon monoxide, along with the ratio between i-butane and n-butane, indicate a significant source of these compounds from the use of fossil fuels, and comparison to previous campaigns suggests that this source could be increasing. Photochemical aging patterns of NMHCs showed that the CARIBIC samples were collected in two distinctly different regions of the monsoon circulation: a southern region where air masses had been recently influenced by low level contact and a northern region, where air parcels had spent substantial time in transit in the upper troposphere before being probed. Estimates of age using ratios of individual NMHCs have ranges of 3â6 days in the south and 9â12 days in the north
- âŠ