46 research outputs found

    Test-retest reliability of segment kinetic energy measures in the golf swing

    Get PDF
    Analyses of segment kinetic energy (KE) can provide the most appropriate means of exploring sequential movements. As the reliability associated with its measurement has not been reported, the aim of this study was to examine the test-retest reliability of segment KE measures in the golf swing. On two occasions, seven male golfers hit five shots with three different clubs. Body segment inertia parameters were estimated for 17 rigid bodies and 3D kinematic data were collected during each swing. The magnitude and timing of peak total, linear and angular kinetic energies were then calculated for each rigid body and for four segment groups. Regardless of club type, KE was measured with high reliability for almost all rigid bodies and segment groups. However, significantly larger magnitudes of peak total (p = 0.039) and linear (p = 0.021) lower body KE were reported in test 2 than in test 1. The high reliability reported in this study provides support for the use of analyses of segment kinetic energy. However, practitioners should pay careful attention to the identification of anatomical landmarks which define the thigh, pelvis and thorax as this was the main cause of variability in repeated measures of segment kinetic energy

    Standardized voluntary force measurement in a lower extremity rehabilitation robot

    Get PDF
    BACKGROUND: Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD) because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO) Lokomat. To evaluate the capabilities of this new measurement method, inter- and intra-rater reliability were assessed. METHODS: Reliability was assessed in subjects with and without NMD. Subjects were tested twice on the same day by two different therapists to test inter-rater reliability and on two separate days by the same therapist to test intra-rater reliability. RESULTS: Results showed fair to good reliability for the new measurement method to assess isometric muscle force of lower extremities. In subjects without NMD, intraclass correlation coefficients (ICC) for inter-rater reliability ranged from 0.72 to 0.97 and intra-rater reliability from 0.71 to 0.90. In subjects with NMD, ICC ranged from 0.66 to 0.97 for inter-rater and from 0.50 to 0.96 for intra-rater reliability. CONCLUSION: Inter- and intra- rater reliability of an assessment method for measuring maximal voluntary isometric muscle force of lower extremities was demonstrated. We suggest that this method is a valuable tool for documentation and controlling of the rehabilitation process in patients using a DGO

    The validation of backward extrapolation of submaximal oxygen consumption from the oxygen recovery curve

    No full text
    The purpose of this study was to determine the validity and practicality of exponential vs linear backward extrapolation of the O2 recovery curve for prediction of exercise oxygen consumption (VO2). Eight men and women, age 20.1, 0.9 years, body mass 66.0, 2.5 kg (mean, SEM), completed seven bouts of cycle ergometer exercise at submaximal power outputs ranging from 50 to 175 W. Respiratory gases were collected from each subject during exercise and recovery. The monoexponential extrapolation of five recovery samples (r2=0.85) and linear extrapolation of one recovery sample taken during the first 20-s of recovery (r2=0.83) accounted for similar amounts of variance in predicting exercise VO2. The linear regression equation was the most practical predictor, as only one recovery gas sample was necessary and it did not require the complicated mathematical techniques used in exponential regression

    The effect of warm-up intensity on range of motion and anaerobic performance

    No full text
    Although there is a paucity of scientific support for the benefits of warm-up, athletes commonly warm up prior to activity with the intention of improving performance and reducing the incidence of injuries. The purpose of this study was to examine the role of warm-up intensity on both range of motion (ROM) and anaerobic performance. Nine males (age = 21.7 +/- 1.6 years, height = 1.77 +/- 0.04 m, weight = 80.2 +/- 6.8 kg, and VO2max = 60.4 +/- 5.4 ml/kg/min) completed four trials. Each trial consisted of hip, knee, and ankle ROM evaluation using an electronic inclinometer and an anaerobic capacity test on the treadmill (time to fatigue at 13 km/hr and 20% grade). Subjects underwent no warm-up or a warm-up of 15 minutes running at 60, 70 or 80% VO2max followed by a series of lower limb stretches. Intensity of warm-up had little effect on ROM, since ankle dorsiflexion and hip extension significantly increased in all warm-up conditions, hip flexion significantly increased only after the 80% VO2max warm-up, and knee flexion did not change after any warm-up. Heart rate and body temperature were significantly increased (p < 0.05) prior to anaerobic performance for each of the warm-up conditions, but anaerobic performance improved significantly only after warm-up at 60% VO2max (10%) and 70% VO2max (13%). A 15-minute warm-up at an intensity of 60-70% VO2max is therefore recommended to improve ROM and enhance subsequent anaerobic performance

    Clothing, textiles and human performance A critical review of the effect on human performance of clothing and textiles

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:8805.700(vol 32 no 2) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore