27 research outputs found

    A critical period of progesterone withdrawal precedes menstruation in macaques

    Get PDF
    Macaques are menstruating nonhuman primates that provide important animal models for studies of hormonal regulation in the uterus. In women and macaques the decline of progesterone (P) at the end of the cycle triggers endometrial expression of a variety of matrix metalloproteinase (MMP) enzymes that participate in tissue breakdown and menstrual sloughing. To determine the minimal duration of P withdrawal required to induce menses, we assessed the effects of adding P back at various time points after P withdrawal on both frank bleeding patterns and endometrial MMP expression. Artificial menstrual cycles were induced by treating the animals sequentially with implants releasing estradiol (E(2)) and progesterone (P). To assess bleeding patterns, P implants were removed at the end of a cycle and then added back at 12, 24, 30, 36, 40, 48, 60, or 72 hours (h) after the initial P withdrawal. Observational analysis of frank bleeding patterns showed that P replacement at 12 and 24 h blocked menses, replacement at 36 h reduced menses but replacement after 36 h failed to block menses. These data indicate that in macaques, a critical period of P withdrawal exists and lasts approximately 36 h. In other similarly cycled animals, we withdrew P and then added P back either during (12–24 h) or after (48 h) the critical period, removed the uterus 24 h after P add back and evaluated endometrial MMP expression. Immunocytochemistry showed that replacement of P during the critical period suppressed MMP-1, -2 and -3 expression along with menses, but replacement of P at 48 h, which failed to suppress mense, suppressed MMP-1 and MMP-3 but did not block MMP-2. We concluded that upregulation of MMPs is essential to menses induction, but that after the critical period, menses will occur even if some MMPs are experimentally blocked

    Development of Soft-Hardware Platform for Training System Design of Electrotechnical Complexes and Electric Drives

    Get PDF
    The article presents the results of the development of software and hardware platform as the equipment for the training of children and youth work skills with robotics, allowing in the future to apply this knowledge in practice, implementing automation system for home use. We consider the problems of existing solutions. The main difference is the integration of the proposed fees and extensions into a single set by connecting the connectors and the ability to connect third-party components from different manufacturers, without limiting users. As well as a simplified method using a visual object-oriented programming allows you to immediately engage in the work. Prepared lessons and tasks in the game style simplifies the information and allows you to understand how you can apply one or another technical solution

    Role of nonhuman primate models in the discovery and clinical development of selective progesterone receptor modulators (SPRMs)

    Get PDF
    Selective progesterone receptor modulators (SPRMs) represent a new class of progesterone receptor ligands that exert clinically relevant tissue-selective progesterone agonist, antagonist, partial, or mixed agonist/antagonist effects on various progesterone target tissues in an in vivo situation depending on the biological action studied. The SPRM asoprisnil is being studied in women with symptomatic uterine leiomyomata and endometriosis. Asoprisnil shows a high degree of uterine selectivity as compared to effects on ovulation or ovarian hormone secretion in humans. It induces amenorrhea and decreases leiomyoma volume in a dose-dependent manner in the presence of follicular phase estrogen concentrations. It also has endometrial antiproliferative effects. In pregnant animals, the myometrial, i.e. labor-inducing, effects of asoprisnil are blunted or absent. Studies in non-human primates played a key role during the preclinical development of selective progesterone receptor modulators. These studies provided the first evidence of uterus-selective effects of asoprisnil and structurally related compounds, and the rationale for clinical development of asoprisnil

    Physiological Action of Progesterone in the Nonhuman Primate Oviduct

    No full text
    Therapies that target progesterone action hold potential as contraceptives and in managing gynecological disorders. Recent literature reviews describe the role of steroid hormones in regulating the mammalian oviduct and document that estrogen is required to stimulate epithelial differentiation into a fully functional ciliated and secretory state. However, these reviews do not specifically address progesterone action in nonhuman primates (NHPs). Primates differ from most other mammals in that estrogen levels are >50 pg/mL during the entire menstrual cycle, except for a brief decline immediately preceding menstruation. Progesterone secreted in the luteal phase suppresses oviductal ciliation and secretion; at the end of the menstrual cycle, the drop in progesterone triggers renewed estrogen-driven tubal cell proliferation ciliation secretory activity. Thus, progesterone, not estrogen, drives fallopian tube cycles. Specific receptors mediate these actions of progesterone, and synthetic progesterone receptor modulators (PRMs) disrupt the normal cyclic regulation of the tube, significantly altering steroid receptor expression, cilia abundance, cilia beat frequency, and the tubal secretory milieu. Addressing the role of progesterone in the NHP oviduct is a critical step in advancing PRMs as pharmaceutical therapies

    Intrauterine administration of CDB-2914 (Ulipristal) suppresses the endometrium of rhesus macaques

    No full text
    Background: Ulipristal (UPA; CDB-2914) is a progesterone receptor modulator with contraceptive potential. To test its effects when delivered by an intrauterine system (IUS), we prepared control and UPA-filled IUS and evaluated their effects in rhesus macaques. Study Design: Short lengths of Silastic tubing either empty (n=3) or containing UPA (n=5) were inserted into the uteri of 8 ovariectomized macaques. Animals were cycled by sequential treatment with estradiol and progesterone. After 3.5 cycles, the uterus was removed. Results: During treatment, animals with an empty IUS menstruated for a mean total of 11.66±0.88 days, while UPA-IUS treated animals bled for only 1±0.45 days. Indices of endometrial proliferation were significantly reduced by UPA-IUS treatment. The UPA exposed endometria were atrophied with some glandular cysts while the blank controls displayed a proliferative morphology without cysts. Androgen receptors were more intensely stained in the glands of the UPA-IUS treated endometria than in the blank-IUS treated controls. Conclusions: In rhesus macaques, a UPA-IUS induced endometrial atrophy and amenorrhea. The work provides proof of principle that an IUS can deliver effective intrauterine concentrations of Ulipristal
    corecore