47 research outputs found

    Matching renormalisable couplings: simple schemes and a plot

    Full text link
    We discuss different choices that can be made when matching a general high-energy theory -- with the restriction that it should not contain heavy gauge bosons -- onto a general renormalisable effective field theory at one loop, with particular attention to the quartic scalar couplings and Yukawa couplings. This includes a generalisation of the counterterm scheme that was found to be useful in the case of high-scale/split supersymmetry, but we show the important differences when there are new heavy scalar fields in singlet or triplet representations of SU(2)SU(2). We also analytically compare our methods and choices with the approach of matching pole masses, proving the equivalence with one of our choices. We outline how to make the extraction of quartic couplings using pole masses more efficient, an approach that we hope will generalise beyond one loop. We give examples of the impact of different scheme choices in a toy model; we also discuss the MSSM and give the threshold corrections to the Higgs quartic coupling in Dirac gaugino models.Comment: 59 pages, 7 figures. v2: added some explanations. Matches published versio

    Leading two-loop corrections to the Higgs boson masses in SUSY models with Dirac gauginos

    Full text link
    We compute the two-loop O(as*at) corrections to the Higgs boson masses in supersymmetric extensions of the Standard Model with Dirac gaugino masses. We rely on the effective-potential technique, allow for both Dirac and Majorana mass terms for the gluinos, and compute the corrections in both the DRbar and on-shell renormalisation schemes. We give detailed results for the MDGSSM and the MRSSM, and simple approximate formulae valid in the decoupling limit for all currently-studied variants of supersymmetric models with Dirac gluinos. These results represent the first explicit two-loop calculation of Higgs boson masses in supersymmetric models beyond the MSSM and the NMSSM.Comment: 36 pages, 5 figures; v2: version published in JHE

    Improved determination of the Higgs mass in the MSSM with heavy superpartners

    Full text link
    We present several advances in the effective field theory calculation of the Higgs mass in MSSM scenarios with heavy superparticles. In particular, we compute the dominant two-loop threshold corrections to the quartic Higgs coupling for generic values of the relevant SUSY-breaking parameters, including all contributions controlled by the strong gauge coupling and by the third-family Yukawa couplings. We also study the effects of a representative subset of dimension-six operators in the effective theory valid below the SUSY scale. Our results will allow for an improved determination of the Higgs mass and of the associated theoretical uncertainty.Comment: 33 pages, 7 PDF figure

    A Fake Split Supersymmetry Model for the 126 GeV Higgs

    Get PDF
    We consider a scenario where supersymmetry is broken at a high energy scale, out of reach of the LHC, but leaves a few fermionic states at the TeV scale. The particle content of the low-energy effective theory is similar to that of Split Supersymmetry. However, the gauginos and higgsinos are replaced by fermions carrying the same quantum numbers but having different couplings, which we call fake gauginos and fake higgsinos. We study the prediction for the light-Higgs mass in this Fake Split SUSY Model (FSSM). We find that, in contrast to Split or high-scale supersymmetry, a 126 GeV Higgs boson is easily obtained even for arbitrarily high values of the supersymmetry scale. For a supersymmetry scale greater than roughly 100 PeV, the Higgs mass is almost independent of the supersymmetry scale and the stop mixing parameter, while the observed value is achieved for tan beta between 1.3 and 1.8 depending on the gluino mass.Comment: 23 pages, 4 figures; v2: matches published versio

    Higgs Mass and Unnatural Supersymmetry

    Get PDF
    Assuming that supersymmetry exists well above the weak scale, we derive the full one-loop matching conditions between the SM and the supersymmetric theory, allowing for the possibility of an intermediate Split-SUSY scale. We also compute two-loop QCD corrections to the matching condition of the Higgs quartic coupling. These results are used to improve the calculation of the Higgs mass in models with high-scale supersymmetry or split supersymmetry, reducing the theoretical uncertainty. We explore the phenomenology of a mini-split scenario with gaugino masses determined by anomaly mediation. Depending on the value of the higgsino mass, the theory predicts a variety of novel possibilities for the dark-matter particle.Comment: 36 pages, 13 pdf figures; v2: matches version published in JHE

    Higgs mass predictions of public NMSSM spectrum generators

    Full text link
    The publicly available spectrum generators for the NMSSM often lead to different predictions for the mass of the standard model-like Higgs boson even if using the same renormalization scheme and two-loop accuracy. Depending on the parameter point, the differences can exceed 5 GeV, and even reach 8 GeV for moderate superparticle masses of up to 2 TeV. It is shown here that these differences can be traced back to the calculation of the running standard model parameters entering all calculations, to the approximations used in the two-loop corrections included in the different codes, and to different choices for the renormalization conditions and scales. In particular, the importance of the calculation of the top Yukawa coupling is pointed out.Comment: 24 pages, no figures; v2: slightly extended discussion, matches version accepted for publication by CP
    corecore