1,255 research outputs found

    A geometrically bounding hyperbolic link complement

    Full text link
    A finite-volume hyperbolic 3-manifold geometrically bounds if it is the geodesic boundary of a finite-volume hyperbolic 4-manifold. We construct here an example of non-compact, finite-volume hyperbolic 3-manifold that geometrically bounds. The 3-manifold is the complement of a link with eight components, and its volume is roughly equal to 29.311.Comment: 23 pages, 19 figure

    Some hyperbolic 4-manifolds with low volume and number of cusps

    Full text link
    We construct here two new examples of non-orientable, non-compact, hyperbolic 4-manifolds. The first has minimal volume vm=4Ï€2/3v_m = 4{\pi}^2/3 and two cusps. This example has the lowest number of cusps among known minimal volume hyperbolic 4-manifolds. The second has volume 2â‹…vm2\cdot v_m and one cusp. It has lowest volume among known one-cusped hyperbolic 4-manifolds.Comment: 12 pages, 11 figure

    The complement of the figure-eight knot geometrically bounds

    Get PDF
    We show that some hyperbolic 3-manifolds which are tessellated by copies of the regular ideal hyperbolic tetrahedron embed geodesically in a complete, finite volume, hyperbolic 4-manifold. This allows us to prove that the complement of the figure-eight knot geometrically bounds a complete, finite volume hyperbolic 4-manifold. This the first example of geometrically bounding hyperbolic knot complement and, amongst known examples of geometrically bounding manifolds, the one with the smallest volume.Comment: 9 pages, 4 figures, typos corrected, improved exposition of tetrahedral manifolds. Added Proposition 3.3, which gives necessary and sufficient conditions for M_T to be a manifold, and Remark 4.4, which shows that the figure-eight knot bounds a 4-manifold of minimal volume. Updated bibliograph

    New hyperbolic 4-manifolds of low volume

    Full text link
    We prove that there are at least 2 commensurability classes of minimal-volume hyperbolic 4-manifolds. Moreover, by applying a well-known technique due to Gromov and Piatetski-Shapiro, we build the smallest known non-arithmetic hyperbolic 4-manifold.Comment: 21 pages, 6 figures. Added the Coxeter diagrams of the commensurability classes of the manifolds. New and better proof of Lemma 2.2. Modified statements and proofs of the main theorems: now there are two commensurabilty classes of minimal volume manifolds. Typos correcte

    Hyperbolic four-manifolds, colourings and mutations

    Full text link
    We develop a way of seeing a complete orientable hyperbolic 44-manifold M\mathcal{M} as an orbifold cover of a Coxeter polytope P⊂H4\mathcal{P} \subset \mathbb{H}^4 that has a facet colouring. We also develop a way of finding totally geodesic sub-manifolds N\mathcal{N} in M\mathcal{M}, and describing the result of mutations along N\mathcal{N}. As an application of our method, we construct an example of a complete orientable hyperbolic 44-manifold X\mathcal{X} with a single non-toric cusp and a complete orientable hyperbolic 44-manifold Y\mathcal{Y} with a single toric cusp. Both X\mathcal{X} and Y\mathcal{Y} have twice the minimal volume among all complete orientable hyperbolic 44-manifolds.Comment: 24 pages, 11 figures; to appear in Proceedings of the London Mathematical Societ
    • …
    corecore