45 research outputs found

    Electronic response and bandstructure modulation of carbon nanotubes in a transverse electrical field

    Full text link
    The electronic properties of carbon nanotubes in a uniform transverse field are investigated within a single orbital tight-binding model. For doped nanotubes, the dielectric function is found to depend not only on symmetry of the tube, but also on radius and Fermi level position. Bandgap opening/closing is predicted for zigzag tubes, while it is found that armchair tubes always remain metallic, which is explained by the symmetry in their configuration. The bandstructures for both types are considerably modified when the field strength is large enough to mix neighboring subbands.Comment: Accepted for publication in Nanoletters, 8 pages, 3 figure

    Metal-Semiconductor Transition in Armchair Carbon Nanotubes by Symmetry Breaking

    Full text link
    The electronic band structure of armchair carbon nanotubes may be considerably modified by potentials with angular dependence. Different angular modes V_q ~ cos(q*theta) have been studied within a tight-binding scheme. Using symmetry arguments, we demonstrate a bandgap opening in these metallic nanotubes when certain selection rules are satisfied for both potential and nanotube structure. We estimate the bandgap opening as a function of both the external potential strength and the nanotube radius and suggest an effective mechanism of metal-semiconductor transition by combination of different forms of perturbations.Comment: 3 pages, 3 figures, published on AP

    Transport in Nanotubes: Effect of Remote Impurity Scattering

    Full text link
    Theory of the remote Coulomb impurity scattering in single--wall carbon nanotubes is developed within one--electron approximation. Boltzmann equation is solved within drift--diffusion model to obtain the tube conductivity. The conductivity depends on the type of the nanotube bandstructure (metal or semiconductor) and on the electron Fermi level. We found exponential dependence of the conductivity on the Fermi energy due to the Coulomb scattering rate has a strong dependence on the momentum transfer. We calculate intra-- and inter--subband scattering rates and present general expressions for the conductivity. Numerical results, as well as obtained analytical expressions, show that the degenerately doped semiconductor tubes may have very high mobility unless the doping level becomes too high and the inter--subband transitions impede the electron transport.Comment: 13 pages, 4 figure

    Metal-Semiconductor Transition and Fermi Velocity Renormalization in Metallic Carbon Nanotubes

    Full text link
    Angular perturbations modify the band structure of armchair (and other metallic) carbon nanotubes by breaking the tube symmetry and may induce a metal-semiconductor transition when certain selection rules are satisfied. The symmetry requirements apply for both the nanotube and the perturbation potential, as studied within a nonorthogonal π\pi-orbital tight-binding method. Perturbations of two categories are considered: an on-site electrostatic potential and a lattice deformation which changes the off-site hopping integrals. Armchair nanotubes are proved to be robust against the metal-semiconductor transition in second-order perturbation theory due to their high symmetry, but can develop a nonzero gap by extending the perturbation series to higher orders or by combining potentials of different types. An assumption of orthogonality between π\pi orbitals is shown to lead to an accidental electron-hole symmetry and extra selection rules that are weakly broken in the nonorthogonal theory. These results are further generalized to metallic nanotubes of arbitrary chirality.Comment: Submitted to Phys. Rev. B, 23 pages, 4 figure
    corecore