13 research outputs found

    De novo variants of NR4A2 are associated with neurodevelopmental disorder and epilepsy

    Get PDF
    PURPOSE: This study characterizes the clinical and genetic features of nine unrelated patients with de novo variants in the NR4A2 gene. METHODS: Variants were identified and de novo origins were confirmed through trio exome sequencing in all but one patient. Targeted RNA sequencing was performed for one variant to confirm its splicing effect. Independent discoveries were shared through GeneMatcher. RESULTS: Missense and loss-of-function variants in NR4A2 were identified in patients from eight unrelated families. One patient carried a larger deletion including adjacent genes. The cases presented with developmental delay, hypotonia (six cases), and epilepsy (six cases). De novo status was confirmed for eight patients. One variant was demonstrated to affect splicing and result in expression of abnormal transcripts likely subject to nonsense-mediated decay. CONCLUSION: Our study underscores the importance of NR4A2 as a disease gene for neurodevelopmental disorders and epilepsy. The identified variants are likely causative of the seizures and additional developmental phenotypes in these patients

    PTPN4 germline variants result in aberrant neurodevelopment and growth

    Get PDF
    Protein-tyrosine phosphatases (PTPs) are pleomorphic regulators of eukaryotic cellular responses to extracellular signals that function by modulating the phosphotyrosine of specific proteins. A handful of PTPs have been implicated in germline and somatic human disease. Using exome sequencing, we identified missense and truncating variants i

    De novo variants of NR4A2 are associated with neurodevelopmental disorder and epilepsy

    Get PDF
    Purpose This study characterizes the clinical and genetic features of nine unrelated patients with de novo variants in the NR4A2 gene. Methods Variants were identified and de novo origins were confirmed through trio exome sequencing in all but one patient. Targeted RNA sequencing was performed for one variant to confirm its splicing effect. Independent discoveries were shared through GeneMatcher. Results Missense and loss-of-function variants in NR4A2 were identified in patients from eight unrelated families. One patient carried a larger deletion including adjacent genes. The cases presented with developmental delay, hypotonia (six cases), and epilepsy (six cases). De novo status was confirmed for eight patients. One variant was demonstrated to affect splicing and result in expression of abnormal transcripts likely subject to nonsense-mediated decay. Conclusion Our study underscores the importance of NR4A2 as a disease gene for neurodevelopmental disorders and epilepsy. The identified variants are likely causative of the seizures and additional developmental phenotypes in these patients

    Diagnosis of human heritable diseases : laboratory approaches and outcomes

    No full text
    Detection of mutant human genes is rapidly becoming an integral part of clinical practice. Human disease may arise by genetic deletion, insertion, fusion, point mutation, or amplification of unstable sequences. Such changes in structure may occur in germ cells or somatically. Rapid advances in understanding the complex nuclear and mitochondrial genomes necessitates deployment of a variety of methods to identify aberrant genes. These techniques include polymerase chain reaction, Southern transfer, and allele- specific hybridization studies, as well as methods to unmask mismatches between mutant and normal sequences. Development of protein truncation tests has added a vehicle for assessing larger DNA segments for mutations that cause premature translational termination. Linkage analysis remains an important tool where direct assay of disease-causing mutations is not possible. Considerations of confidentiality, informed consent, and insurability are important whenever genetic testing is used. These issues will assume increasing importance as presymptomatic testing for heritable predispositions emerges for common conditions.10 page(s

    Linkage of preaxial polydactyly type 2 to 7q36

    No full text
    We have characterized a 6-generation North American Caucasian kindred segregating one form of preaxial polydactyly type 2 (PPD-2). We demonstrate linkage to the 7q36 region and describe a submicroscopic telomeric chromosomal deletion in phase with the PPD-2 phenotype. Recently, several kindreds segregating triphalangeal thumb (TPT) with and without associated hand anomalies (syndactyly and/or postaxial polydactyly)have also been linked to the subtelomeric region of chromosome 7q [Heutink et al., 1994: Nat Genet 6:287-291; Tsukurov et al., 1994: Nat Genet 6:282-286]. We demonstrate by haplotype analysis that our North American pedigree represents a PPD allele that is independent of the founder PPD allele present in the previously described kindreds.8 page(s

    Deletion within chromosome 22 is common in patients with absent pulmonary valve syndrome

    No full text
    Interstitial deletions in chromosome 22 and features associated with CATCH-22 syndrome have been reported in patients with conotruncal congenital head anomalies. Absent pulmonary valve syndrome is characterized by absent or rudimentary pulmonary valve cusps, absent ductus arteriosus, conoventricular septal defect, and massive dilation of the pulmonary arteries. Because absence of the ductus arteriosus is a key element in the pathogenesis of this syndrome and aortic arch malformations are frequently seen in patients with CATCH-22 syndrome, we hypothesized that patients with absent pulmonary valve syndrome would have a high incidence of deletions in the critical region of chromosome 22. Eight patients with absent pulmonary valve syndrome were studied. Metaphase preparations were examined with fluorescent in situ hybridization of the N25 (D22S75) probe to the critical region of chromosome 22q11.2. Deletions were detected in 6 of 8 patients. The presence of deletions in chromosome 22 in most of the patients we have examined with a diagnosis of absent pulmonary valve syndrome supports a specific genetic and embryologic mechanism involving the interaction of the neural crest and the primitive aortic arches as one cause of congenital absence of the pulmonary valve.4 page(s

    PTPN4 germline variants result in aberrant neurodevelopment and growth

    No full text
    Protein-tyrosine phosphatases (PTPs) are pleomorphic regulators of eukaryotic cellular responses to extracellular signals that function by modulating the phosphotyrosine of specific proteins. A handful of PTPs have been implicated in germline and somatic human disease. Using exome sequencing, we identified missense and truncating variants i

    Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor

    Get PDF
    We have identified three truncating, two splice-site, and three missense variants at conserved amino acids in the CUL4B gene on Xq24 in 8 of 250 families with X-linked mental retardation (XLMR). During affected subjects' adolescence, a syndrome emerged with delayed puberty, hypogonadism, relative macrocephaly, moderate short stature, central obesity, unprovoked aggressive outbursts, fine intention tremor, pes cavus, and abnormalities of the toes. This syndrome was first described by Cazebas et al., in a family that was included in our study and that carried a CUL4B missense variant. CUL4B is a ubiquitin E3 ligase subunit implicated in the regulation of several biological processes, and CUL4B is the first XLMR gene that encodes an E3 ubiquitin ligase. The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority

    Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations.

    No full text
    CACNA1C encodes the alpha-1-subunit of a voltage-dependent L-type calcium channel expressed in human heart and brain. Heterozygous variants in CACNA1C have previously been reported in association with Timothy syndrome and long QT syndrome. Several case reports have suggested that CACNA1C variation may also be associated with a primarily neurological phenotype. We describe 25 individuals from 22 families with heterozygous variants in CACNA1C, who present with predominantly neurological manifestations. Fourteen individuals have de novo, nontruncating variants and present variably with developmental delays, intellectual disability, autism, hypotonia, ataxia, and epilepsy. Functional studies of a subgroup of missense variants via patch clamp experiments demonstrated differential effects on channel function in vitro, including loss of function (p.Leu1408Val), neutral effect (p.Leu614Arg), and gain of function (p.Leu657Phe, p.Leu614Pro). The remaining 11 individuals from eight families have truncating variants in CACNA1C. The majority of these individuals have expressive language deficits, and half have autism. We expand the phenotype associated with CACNA1C variants to include neurodevelopmental abnormalities and epilepsy, in the absence of classic features of Timothy syndrome or long QT syndrome
    corecore