6,315 research outputs found

    Realistic Tight Binding Model for the Electronic Structure of II-VI Semiconductors

    Get PDF
    We analyze the electronic structure of group II-VI semiconductors obtained within LMTO approach in order to arrive at a realistic and minimal tight binding model, parameterized to provide an accurate description of both valence and conduction bands. It is shown that a nearest-neighbor sp3d5sp^3d^5 model is fairly sufficient to describe to a large extent the electronic structure of these systems over a wide energy range, obviating the use of any fictitious ss^* orbital. The obtained hopping parameters obey the universal scaling law proposed by Harrison, ensuring transferability to other systems. Furthermore, we show that certain subtle features in the bonding of these compounds require the inclusion of anion-anion interactions in addition to the nearest-neighbor cation-anion interactions.Comment: 9 pages, 9 figure

    Estimates of electronic interaction parameters for LaMMO3_3 compounds (MM=Ti-Ni) from ab-initio approaches

    Full text link
    We have analyzed the ab-initio local density approximation band structure calculations for the family of perovskite oxides, LaMMO3_3 with MM=Ti-Ni within a parametrized nearest neighbor tight-binding model and extracted various interaction strengths. We study the systematics in these interaction parameters across the transition metal series and discuss the relevance of these in a many-body description of these oxides. The results obtained here compare well with estimates of these parameters obtained via analysis of electron spectroscopic results in conjunction with the Anderson impurity model. The dependence of the hopping interaction strength, t, is found to be approximately r3r^{-3}.Comment: 18 pages; 1 tex file+9 postscript files (appeared in Phys Rev B Oct 15,1996

    The ins and outs of participation in a weather information system

    Get PDF
    In this paper our aim is to show even though access to technology, information or data holds the potential for improved participation, participation is wired into a larger network of actors, artefacts and information practices. We draw on a case study of a weather information system developed and implemented by a non-profit organisation to both describe the configuration of participation, but also critically assess inclusion and exclusion. We present a set of four questions - a basic, practical toolkit - by which we together with the organisation made sense of and evaluated participation in the system

    Electronic Band Structure In A Periodic Magnetic Field

    Full text link
    We analyze the energy band structure of a two-dimensional electron gas in a periodic magnetic field of a longitudinal antiferromagnet by considering a simple exactly solvable model. Two types of states appear: with a finite and infinitesimal longitudinal mobility. Both types of states are present at a generic Fermi surface. The system exhibits a transition to an insulating regime with respect to the longitudinal current, if the electron density is sufficiently low.Comment: 8 pages, 5 figures; to appear in Phys. Rev. B '9

    Colloquium: The transport properties of graphene: An introduction

    Full text link
    An introduction to the transport properties of graphene combining experimental results and theoretical analysis is presented. In the theoretical description simple intuitive models are used to illustrate important points on the transport properties of graphene. The concept of chirality, stemming from the massless Dirac nature of the low energy physics of the material, is shown to be instrumental in understanding its transport properties: the conductivity minimum, the electronic mobility, the effect of strain, the weak (anti-)localization, and the optical conductivity.Comment: As publishe

    Progress and perspective of microneedle system for anti-cancer drug delivery

    Get PDF
    Transdermal drug delivery exhibited encouraging prospects, especially through superficial drug administration routes. However, only a few limited lipophilic drug molecules could cross the skin barrier, those are with low molecular weight and rational Log P value. Microneedles (MNs) can overcome these limitations to deliver numerous drugs into the dermal layer by piercing the outermost skin layer of the body. In the case of superficial cancer treatments, topical drug administration faces severely low transfer efficiency, and systemic treatments are always associated with side effects and premature drug degradation. MN-based systems have achieved excellent technical capabilities and been tested for pre-clinical chemotherapy, photothermal therapy, photodynamic therapy, and immunotherapy. In this review, we will focus on the features, progress, and opportunities of MNs in the anticancer drug delivery system. Then, we will discuss the strategies and advantages in these works and summarize challenges, perspectives, and translational potential for future applications

    Orbital Structure and Magnetic Ordering in Layered Manganites: Universal Correlation and Its Mechanism

    Full text link
    Correlation between orbital structure and magnetic ordering in bilayered manganites is examined. A level separation between the 3d3z2r23d_{3z^2-r^2} and 3dx2y23d_{x^2-y^2} orbitals in a Mn ion is calculated in the ionic model for a large number of the compounds. It is found that the relative stability of the orbitals dominates the magnetic transition temperatures as well as the magnetic structures. A mechanism of the correlation between orbital and magnetism is investigated based on the theoretical model with the two ege_g orbitals under strong electron correlation.Comment: 4 pages, 4 figure

    Indirect and direct impacts of typhoon In-Fa (2021) on heavy precipitation in inland and coastal areas of China: synoptic-scale environments and return period analysis

    Get PDF
    In July 2021, Typhoon In-Fa (TIF) triggered a significant indirect heavy precipitation event (HPE) in central China and a direct HPE in eastern China. Both these events led to severe disasters. However, the synoptic-scale conditions and the impacts of these HPEs on future estimations of return periods remain poorly understood. Here, we find that the remote HPE that occurred̰2200 km ahead of TIF over central China was a predecessor rain event (PRE). The PRE unfolded under the equatorward entrance of the upper-level westerly jet. This event, which encouraged divergent and adiabatic outflow in the upper level, subsequently intensified the strength of the upper-level westerly jet. In contrast, the direct HPE in eastern China was due primarily to the long duration and slow movement of TIF. The direct HPE occurred in areas situated less than 200 km from TIF’s center and to the left of TIF’s propagation trajectory. Anomaly analyses reveal favorable thermodynamic and dynamic conditions and abundant atmospheric moisture that sustained TIF’s intensity. A saddle-shaped pressure field in the north of eastern China and peripheral weak steering flow impeded TIF’s movement northward. Hydrologically, the inclusion of these two HPEs in the historical record leads to a decrease in the estimated return periods of similar HPEs. Our findings highlight the potential difficulties that HPEs could introduce for the design of hydraulic engineering infrastructure as well as for the disaster mitigation measures required to alleviate future risk, particularly in central China

    Pressure Effects in Manganites with Layered Perovskite Structure

    Full text link
    Pressure effects on the charge and spin dynamics in the bilayer manganite compounds La22xSr1+2xMn2O7La_{2-2x}Sr_{1+2x}Mn_2O_7 are studied theoretically by taking into account the orbital degrees of freedom. The orbital degrees are active in the layered crystal structure, and applied hydrostatic pressure stabilizes the 3dx2y23d_{x^2-y^2} orbital in comparison with 3d3z2r23d_{3z^2-r^2}. The change of the orbital states weakens the interlayer charge and spin couplings, and suppresses the three dimensional ferromagnetic transition. Numerical results, based on an effective Hamiltonian which includes the energy level difference of the orbitals, show that the applied pressure controls the dimensionality of the spin and charge dynamics through changes of the orbital states.Comment: 5 pages, 2 figure

    Moment-Based Evidence for Simple Rational-Valued Hilbert-Schmidt Generic 2 x 2 Separability Probabilities

    Full text link
    Employing Hilbert-Schmidt measure, we explicitly compute and analyze a number of determinantal product (bivariate) moments |rho|^k |rho^{PT}|^n, k,n=0,1,2,3,..., PT denoting partial transpose, for both generic (9-dimensional) two-rebit (alpha = 1/2) and generic (15-dimensional) two-qubit (alpha=1) density matrices rho. The results are, then, incorporated by Dunkl into a general formula (Appendix D6), parameterized by k, n and alpha, with the case alpha=2, presumptively corresponding to generic (27-dimensional) quaternionic systems. Holding the Dyson-index-like parameter alpha fixed, the induced univariate moments (|rho| |rho^{PT}|)^n and |rho^{PT}|^n are inputted into a Legendre-polynomial-based (least-squares) probability-distribution reconstruction algorithm of Provost (Mathematica J., 9, 727 (2005)), yielding alpha-specific separability probability estimates. Since, as the number of inputted moments grows, estimates based on |rho| |rho^{PT}| strongly decrease, while ones employing |rho^{PT}| strongly increase (and converge faster), the gaps between upper and lower estimates diminish, yielding sharper and sharper bounds. Remarkably, for alpha = 2, with the use of 2,325 moments, a separability-probability lower-bound 0.999999987 as large as 26/323 = 0.0804954 is found. For alpha=1, based on 2,415 moments, a lower bound results that is 0.999997066 times as large as 8/33 = 0.242424, a (simpler still) fractional value that had previously been conjectured (J. Phys. A, 40, 14279 (2007)). Furthermore, for alpha = 1/2, employing 3,310 moments, the lower bound is 0.999955 times as large as 29/64 = 0.453125, a rational value previously considered (J. Phys. A, 43, 195302 (2010)).Comment: 47 pages, 12 figures; slightly expanded and modified for journal publication; this paper incorporates and greatly extends arXiv:1104.021
    corecore