3,457 research outputs found

    Structure and magnetic properties of the cubic oxide fluoride BaFeO2F

    Get PDF
    Fluorination of the parent oxide, BaFeO3- δ, with polyvinylidine fluoride gives rise to a cubic compound with a = 4.0603(4) Å at 298K. 57Fe Mössbauer spectra confirmed that all the iron is present as Fe3+. Neutron diffraction data showed complete occupancy of the anion sites indicating a composition BaFeO2F, with a large displacement of the iron off-site. The magnetic ordering temperature was determined as TN = 645±5K. Neutron diffraction data at 4.2K established G-type antiferromagnetism with a magnetic moment per Fe3+ ion of 3.95μB. However, magnetisation measurements indicated the presence of a weak ferromagnetic moment which is assigned to the canting of the antiferromagnetic structure. 57Fe Mössbauer spectra in the temperature range 10 to 300K were fitted with a model of fluoride ion distribution that retains charge neutrality of the perovskite unit cel

    Isolated PdO sites on SiO2-supported NiO nanoparticles as active sites for allylic alcohol selective oxidation

    Get PDF
    Silica-supported NiO nanoparticles as hosts for isolated PdO catalytic sites. Isolate PdO is confirmed as the species responsible for the chemoselective oxidation of cinnamyl alcohol to cinnamaldehyde by operando X-ray absorption spectroscop

    Geometric phases for non-degenerate and degenerate mixed states

    Full text link
    This paper focuses on the geometric phase of general mixed states under unitary evolution. Here we analyze both non-degenerate as well as degenerate states. Starting with the non-degenerate case, we show that the usual procedure of subtracting the dynamical phase from the total phase to yield the geometric phase for pure states, does not hold for mixed states. To this end, we furnish an expression for the geometric phase that is gauge invariant. The parallelity conditions are shown to be easily derivable from this expression. We also extend our formalism to states that exhibit degeneracies. Here with the holonomy taking on a non-abelian character, we provide an expression for the geometric phase that is manifestly gauge invariant. As in the case of the non-degenerate case, the form also displays the parallelity conditions clearly. Finally, we furnish explicit examples of the geometric phases for both the non-degenerate as well as degenerate mixed states.Comment: 23 page

    Automated Single-Particle Reconstruction of Heterogeneous Inorganic Nanoparticles

    Get PDF
    Single-particle reconstruction can be used to perform three-dimensional (3D) imaging of homogeneous populations of nano-sized objects, in particular viruses and proteins. Here, it is demonstrated that it can also be used to obtain 3D reconstructions of heterogeneous populations of inorganic nanoparticles. An automated acquisition scheme in a scanning transmission electron microscope is used to collect images of thousands of nanoparticles. Particle images are subsequently semi-automatically clustered in terms of their properties and separate 3D reconstructions are performed from selected particle image clusters. The result is a 3D dataset that is representative of the full population. The study demonstrates a methodology that allows 3D imaging and analysis of inorganic nanoparticles in a fully automated manner that is truly representative of large particle populations.Peer reviewe

    Enhanced H2O2 production via photocatalytic O2 reduction over structurally-modified poly(heptazine imide)

    Get PDF
    Solar H2O2 produced by O2 reduction provides a green, efficient, and ecological alternative to the industrial anthraquinone process and H2/O2 direct-synthesis. We report efficient photocatalytic H2O2 production at a rate of 73.4 mM h–1 in the presence of a sacrificial donor on a structurally engineered catalyst, alkali metal-halide modulated poly(heptazine imide) (MX → PHI). The reported H2O2 production is nearly 150 and >4250 times higher than triazine structured pristine carbon nitride under UV–visible and visible light (≥400 nm) irradiation, respectively. Furthermore, the solar H2O2 production rate on MX → PHI is higher than most of the previously reported carbon nitride (triazine, tri-s-triazine), metal oxides, metal sulfides, and other metal–organic photocatalysts. A record high AQY of 96% at 365 nm and 21% at 450 nm was observed. We find that structural modulation by alkali metal-halides results in a highly photoactive MX → PHI catalyst which has a broader light absorption range, enhanced light absorption ability, tailored bandgap, and a tunable band edge position. Moreover, this material has a different polymeric structure, high O2 trapping ability, interlayer intercalation, as well as surface decoration of alkali metals. The specific C≡N groups and surface defects, generated by intercalated MX, were also considered as potential contributors to the separation of photoinduced electron–hole pairs, leading to enhanced photocatalytic activity. A synergy of all these factors contributes to a higher H2O2 production rate. Spectroscopic data help us to rationalize the exceptional photochemical performance and structural characteristics of MX → PHI

    Temporal lobe white matter asymmetry and language laterality in epilepsy patients.

    Get PDF
    Recent studies using diffusion tensor imaging (DTI) have advanced our knowledge of the organization of white matter subserving language function. It remains unclear, however, how DTI may be used to predict accurately a key feature of language organization: its asymmetric representation in one cerebral hemisphere. In this study of epilepsy patients with unambiguous lateralization on Wada testing (19 left and 4 right lateralized subjects; no bilateral subjects), the predictive value of DTI for classifying the dominant hemisphere for language was assessed relative to the existing standard-the intra-carotid Amytal (Wada) procedure. Our specific hypothesis is that language laterality in both unilateral left- and right-hemisphere language dominant subjects may be predicted by hemispheric asymmetry in the relative density of three white matter pathways terminating in the temporal lobe implicated in different aspects of language function: the arcuate (AF), uncinate (UF), and inferior longitudinal fasciculi (ILF). Laterality indices computed from asymmetry of high anisotropy AF pathways, but not the other pathways, classified the majority (19 of 23) of patients using the Wada results as the standard. A logistic regression model incorporating information from DTI of the AF, fMRI activity in Broca\u27s area, and handedness was able to classify 22 of 23 (95.6%) patients correctly according to their Wada score. We conclude that evaluation of highly anisotropic components of the AF alone has significant predictive power for determining language laterality, and that this markedly asymmetric distribution in the dominant hemisphere may reflect enhanced connectivity between frontal and temporal sites to support fluent language processes. Given the small sample reported in this preliminary study, future research should assess this method on a larger group of patients, including subjects with bi-hemispheric dominance

    Spin-Atomic Vibration Interaction and Spin-Flip Hamiltonian of a Single Atomic Spin in a Crystal Field

    Full text link
    We derive the spin-atomic vibration interaction VSAV_{\rm SA} and the spin-flip Hamiltonian VSFV_{\rm SF} of a single atomic spin in a crystal field. We here apply the perturbation theory to a model with the spin-orbit interaction and the kinetic and potential energies of electrons. The model also takes into account the difference in vibration displacement between an effective nucleus and electrons, \Delta {{\boldmath r}}. Examining the coefficients of VSAV_{\rm SA} and VSFV_{\rm SF}, we first show that VSAV_{\rm SA} appears for \Delta {{\boldmath r}}\ne0, while VSFV_{\rm SF} is present independently of \Delta {{\boldmath r}}. As an application, we next obtain VSAV_{\rm SA} and VSFV_{\rm SF} of an Fe ion in a crystal field of tetragonal symmetry. It is found that the magnitudes of the coefficients of VSAV_{\rm SA} can be larger than those of the conventional spin-phonon interaction depending on vibration frequency. In addition, transition probabilities per unit time due to VSAV_{\rm SA} and VSFV_{\rm SF} are investigated for the Fe ion with an anisotropy energy of DSZ2-|D|S_Z^2, where DD is an anisotropy constant and SZS_Z is the ZZ component of a spin operator.Comment: 55 pages, 17 figures, to be published in J. Phys. Soc. Jpn. 79 (2010) No. 11, typos correcte

    Characterisation of the morphology of surface-assembled Au nanoclusters on amorphous carbon

    Get PDF
    In this study, aberration-corrected scanning transmission electron microscopy is employed to investigate the morphology of Au clusters formed from the aggregation of single atoms sputtered onto an amorphous carbon surface. The morphologies of surface-assembled clusters of N > 100 atoms are referenced against the morphologies of size-selected clusters determined from previously published results. We observe that surface-assembled clusters (at the conditions employed here) are approximately spherical in shape. The structural isomers of the imaged clusters have also been identified, and the distribution of structural types is broadly in agreement with those from size-selected cluster deposition sources. For clusters of approximately 147 atoms, we find a preference for icosahedra over decahedra and truncated octahedra, but at this size there is a high proportion of unidentified/amorphous structures. At around 309 atoms, we find a preference for decahedra over icosahedra and truncated octahedra, but over half the structures remain unidentifiable/amorphous. For sizes above approximately 561 atoms we are able to identify most of the structures, and find decahedra are still the most favoured, although in competition with single-crystal fcc morphologies. The similarity in structure between surface-assembled and size-selected clusters from a cluster source provides evidence of the relevance of size-selected cluster studies to clusters synthesised by other, industrially relevant, methodologies

    Magnetic interactions in cubic-, hexagonal- and trigonal barium iron oxide fluoride, BaFeO2F

    Get PDF
    57Fe Mössbauer spectra have been recorded from the hexagonal (6H)- and trigonal (15R)- modifications of BaFeO2F and are compared with those previously recorded from the cubic form of BaFeO2F. The spectra, recorded over a temperature range from 15 to 650K show that all of the iron in all the compounds is in the Fe3+ state. Spectra from the 6H- and 15R- modifications were successfully fitted with components that were related to the Fe(1) and Fe(2) structural sites in the 6H variant and to the Fe(1), Fe(2) and Fe(3) structural sites in the 15R form. The magnetic ordering temperatures were determined as 597±3K for 6H-BaFeO2F and 636±3K for 15R-BaFeO2F. These values are surprisingly close to the value of 645±5K determined for the cubic form. The magnetic interactions in the three forms are compared with a view to explaining this similarity of magnetic ordering temperature. Keywords : Mossbauer barium iron oxide fluorid
    corecore