424 research outputs found

    Triplet Leptogenesis in Left-Right Symmetric Seesaw Models

    Full text link
    We discuss scalar triplet leptogenesis in a specific left-right symmetric seesaw model. We show that the Majorana phases that are present in the model can be effectively used to saturate the existing upper limit on the CP-asymmetry of the triplets. We solve the relevant Boltzmann equations and analyze the viability of triplet leptogenesis. It is known for this kind of scenario that the efficiency of leptogenesis is maximal if there exists a hierarchy between the branching ratios of the triplet decays into leptons and Higgs particles. We show that triplet leptogenesis typically favors branching ratios with not too strong hierarchies, since maximal efficiency can only be obtained at the expense of suppressed CP-asymmetries.Comment: 16 pages, 5 figures, published versio

    Symmetry Scheme for Amino Acid Codons

    Full text link
    Group theoretical concepts are invoked in a specific model to explain how only twenty amino acids occur in nature out of a possible sixty four. The methods we use enable us to justify the occurrence of the recently discovered twenty first amino acid selenocysteine, and also enables us to predict the possible existence of two more, as yet undiscovered amino acids.Comment: 18 pages which include 4 figures & 3 table

    Misuses of the finite-energy sum rules

    Get PDF
    It is shown that any model in which the scattering amplitude is given by finitely spaced trajectories of direct-channel resonances does not yield Regge asymptotic behavior in the direct channel. Several difficulties associated with the use of Regge asymptotic behavior at low values of the energy through the finite-energy sum rules are noted

    A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing

    Get PDF
    Gene editing is a versatile technique in biomedicine that promotes fundamental research as well as clinical therapy. The development of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a genome editing machinery has accelerated the application of gene editing. However, the delivery of CRISPR components often suffers when using conventional transfection methods, such as viral transduction and chemical vectors, due to limited packaging size and inefficiency toward certain cell types. In this review, we discuss physical transfection methods for CRISPR gene editing which can overcome these limitations. We outline different types of physical transfection methods, highlight novel techniques to deliver CRISPR components, and emphasize the role of micro and nanotechnology to improve transfection performance. We present our perspectives on the limitations of current technology and provide insights on the future developments of physical transfection methods

    Implications of LEP Results for SO(10) Grandunification with Two Intermediate Stages

    Full text link
    We consider the breaking of the grand unification group SO(10)SO(10) to the standard model gauge group through several chains containing two intermediate stages. Using the values of the gauge coupling constants at scale MZM_Z derived from recent LEP data, we determine the range of their intermediate and unification scales. In particular, we identify those chains that permit new gauge structure at relatively low energy (1TeV)(\sim 1\, {\rm TeV}).Comment: (LATEX, 9 pages + 3 pages of figures not included) OITS-48

    Antigen-Specific T Cells: Analyses of the Needles in the Haystack

    Get PDF
    Antigen binding to T cell receptors is a critical step in an immune response. Detection and characterization of rare populations of T cells enhances our ability to understand and treat diseas

    Possible Candidates for SUSY SO(10) Model with an Intermediate Scale

    Full text link
    We study the possibility of an intermediate scale existing in supersymmetric SO(10) grand unified theories: The intermediate scale is demanded to be around 10^{12} GeV so that neutrinos can obtain masses suitable for explaining the experimental data on the deficit of solar neutrino with Mikheev-Smirnov-Wolfenstein solution and the existence of hot dark matter. We show that any Pati-Salam type intermediate symmetries are excluded by requiring reasonable conditions and only SU(2)L×SU(2)R×SU(3)C×U(1)BLSU(2)_L\times SU(2)_R \times SU(3)_C\times U(1)_{B-L} is likely to be realized as an intermediate symmetry.Comment: LaTeX, 8 pages + 1 uuencoded eps figure (Error corrected

    Z', new fermions and flavor changing processes, constraints on E6_6 models from μ\mu --> eee

    Full text link
    We study a new class of flavor changing interactions, which can arise in models based on extended gauge groups (rank >>4) when new charged fermions are present together with a new neutral gauge boson. We discuss the cases in which the flavor changing couplings in the new neutral current coupled to the ZZ^\prime are theoretically expected to be large, implying that the observed suppression of neutral flavor changing transitions must be provided by heavy ZZ^\prime masses together with small ZZ-ZZ^\prime mixing angles. Concentrating on E6_6 models, we show how the tight experimental limit on μeee\mu \rightarrow eee implies serious constraints on the ZZ^\prime mass and mixing angle. We conclude that if the value of the flavor changing parameters is assumed to lie in a theoretically natural range, in most cases the presence of a ZZ^\prime much lighter than 1 TeV is unlikely.Comment: plain tex, 22 pages + 2 pages figures in PostScript (appended after `\bye'), UM-TH 92-1

    TCR hypervariable regions expressed by T cells that respond to effective tumor vaccines

    Get PDF
    A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-012-1217-5) contains supplementary material, which is available to authorized users

    Sterile neutrino dark matter in BLB-L extension of the standard model and galactic 511 keV line

    Get PDF
    Sterile right-handed neutrinos can be naturally embedded in a low scale gauged U(1)BLU(1)_{B-L} extension of the standard model. We show that, within a low reheating scenario, such a neutrino is an interesting candidate for dark matter. We emphasize that if the neutrino mass is of order of MeV, then it accounts for the measured dark matter relic density and also accommodates the observed flux of 511 keV photons from the galactic bulge.Comment: 10 pages, 1 figure, references added, final version appeared in JCA
    corecore