161 research outputs found

    Activation of T-cell Protein-tyrosine Phosphatase Suppresses Keratinocyte Survival and Proliferation following UVB Irradiation

    Get PDF
    Chronic exposure to UV radiation can contribute to the development of skin cancer by promoting protein-tyrosine kinase (PTK) signaling. Studies show that exposure to UV radiation increases the ligand-independent activation of PTKs and induces protein-tyrosine phosphatase (PTP) inactivation. In the present work, we report that T-cell PTP (TC-PTP) activity is stimulated during the initial response to UVB irradiation, which leads to suppression of keratinocyte cell survival and proliferation via the down-regulation of STAT3 signaling. Our results show that TC-PTP-deficient keratinocyte cell lines expressed a significantly increased level of phosphorylated STAT3 after exposure to low dose UVB. This increase corresponded with increased cell proliferation in TC-PTP-deficient keratinocytes following UVB irradiation. Loss of TC-PTP also reduced UVB-induced apoptosis. Corroborating with these results, overexpression of TC-PTP in keratinocyte cell lines yielded a decrease in phosphorylated STAT3 levels, which corresponded with a significant decrease in cell proliferation in response to low dose UVB. We demonstrate that TC-PTP activity was increased upon UVB exposure, and overexpression of TC-PTP in keratinocyte cell lines further increased its activity in the presence of UVB. Treatment of TC-PTP-deficient keratinocytes with the STAT3 inhibitor STA21 significantly reduced cell viability following UVB exposure in comparison with untreated TC-PTP-deficient keratinocytes, confirming that the effect of TC-PTP on cell viability is mediated by STAT3 dephosphorylation. Combined, our results indicate that UVB-mediated activation of TC-PTP plays an important role in the STAT3-dependent regulation of keratinocyte cell proliferation and survival. Furthermore, these results suggest that TC-PTP may be a novel potential target for the prevention of UVB-induced skin cancer.STAT3 promotes UVB-induced keratinocyte cell proliferation. Results TC-PTP inhibits STAT3-mediated mouse keratinocyte skin cell proliferation and survival following UVB irradiation. Conclusion TC-PTP plays an important role in the skin cell response to UVB radiation by regulating cell proliferation and survival. Significance TC-PTP shows tumor-suppressive capabilities in skin

    UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3σ axis inhibits keratinocyte survival and proliferation

    Get PDF
    Understanding protein subcellular localization is important to determining the functional role of specific proteins. T-cell protein tyrosine phosphatase (TC-PTP) contains bipartite nuclear localization signals (NLSI and NLSII) in its C-terminus. We previously have demonstrated that the nuclear form of TC-PTP (TC45) is mainly localized to the cytoplasm in keratinocytes and it is translocated to the nucleus following UVB irradiation. Here, we report that TC45 is translocated by an AKT/14-3-3σ-mediated mechanism in response to UVB exposure, resulting in increased apoptosis and decreased keratinocyte proliferation. We demonstrate that UVB irradiation increased phosphorylation of AKT and induced nuclear translocation of 14-3-3σ and TC45. However, inhibition of AKT blocked nuclear translocation of TC45 and 14-3-3σ. Site-directed mutagenesis of 14-3-3σ binding sites within TC45 showed that a substitution at Threonine 179 (TC45/T179A) effectively blocked UVB-induced nuclear translocation of ectopic TC45 due to the disruption of the direct binding between TC45 and 14-3-3σ. Overexpression of TC45/T179A in keratinocytes resulted in a decrease of UVB-induced apoptosis which corresponded to an increase in nuclear phosphorylated STAT3, and cell proliferation was higher in TC45/T179A-overexpressing keratinocytes compared to control keratinocytes following UVB irradiation. Furthermore, deletion of TC45 NLSII blocked its UVB-induced nuclear translocation, indicating that both T179 and NLSII are required. Taken together, our findings suggest that AKT and 14-3-3σ cooperatively regulate TC45 nuclear translocation in a critical step of an early protective mechanism against UVB exposure that signals the deactivation of STAT3 in order to promote keratinocyte cell death and inhibit keratinocyte proliferation

    Inhibition of neddylation represses lipopolysaccharide-induced proinflammatory cytokine production in macrophage cells

    Get PDF
    Background: Lipopolysaccharides (LPSs) up-regulate proinflammatory cytokines in macrophages, partly through a NF-κB-dependent process. Results: Blocking neddylation, which helps regulate NF-κB, represses LPS-induced up-regulation of proinflammatory cytokines. Conclusion: Neddylation plays a role in the up-regulation of NF-κB-regulated proinflammatory cytokines produced by macrophages in response to LPS. Significance: Inhibition of neddylation represents a novel and effective method for the prevention of LPS-induced proinflammatory cytokines

    Overexpression of TC-PTP in murine epidermis attenuates skin tumor formation

    Get PDF
    T-cell protein tyrosine phosphatase (TC-PTP), encoded by Ptpn2, has been shown to function as a tumor suppressor during skin carcinogenesis. In the current study, we generated a novel epidermal-specific TC-PTP-overexpressing (K5HA.Ptpn2) mouse model to show that TC-PTP contributes to the attenuation of chemically induced skin carcinogenesis through the synergistic regulation of STAT1, STAT3, STAT5, and PI3K/AKT signaling. We found overexpression of TC-PTP increased epidermal sensitivity to DMBA-induced apoptosis and it decreased TPA-mediated hyperproliferation, coinciding with reduced epidermal thickness. Inhibition of STAT1, STAT3, STAT5, or AKT reversed the effects of TC-PTP overexpression on epidermal survival and proliferation. Mice overexpressing TC-PTP in the epidermis developed significantly reduced numbers of tumors during skin carcinogenesis and presented a prolonged latency of tumor initiation. Examination of human papillomas and squamous cell carcinomas (SCCs) revealed that TC-PTP expression was significantly reduced and TC-PTP expression was inversely correlated with the increased grade of SCCs. Our findings demonstrate that TC-PTP is a potential therapeutic target for the prevention of human skin cancer given that it is a major negative regulator of oncogenic signaling

    Membrane-Proximal Epitope Facilitates Efficient T Cell Synapse Formation by Anti-FcRH5/CD3 and Is a Requirement for Myeloma Cell Killing

    Get PDF
    The anti-FcRH5/CD3 T cell-dependent bispecific antibody (TDB) targets the B cell lineage marker FcRH5 expressed in multiple myeloma (MM) tumor cells. We demonstrate that TDBs trigger T cell receptor activation by inducing target clustering and exclusion of CD45 phosphatase from the synapse. The dimensions of the target molecule play a key role in the efficiency of the synapse formation. The anti-FcRH5/CD3 TDB kills human plasma cells and patient-derived myeloma cells at picomolar concentrations and results in complete depletion of B cells and bone marrow plasma cells in cynomolgus monkeys. These data demonstrate the potential for the anti-FcRH5/CD3 TDB, alone or in combination with inhibition of PD-1/PD-L1 signaling, in the treatment of MM and other B cell malignancies.This work was supported by a Sir Henry Dale Fellowship (J.R.J.) jointly funded by the Wellcome Trust and the Royal Society (grant number: 099966/Z/12/Z). PhD studentships (S.A.M. and M.J.H.) were funded by the Wellcome Trust (grant number: 102195/Z/13/Z)

    Redirecting T cell activity in solid tumours

    No full text
    • …
    corecore