3,232 research outputs found
Thermoelectric transport of perfectly conducting channels in two- and three-dimensional topological insulators
Topological insulators have gapless edge/surface states with novel transport
properties. Among these, there are two classes of perfectly conducting channels
which are free from backscattering: the edge states of two-dimensional
topological insulators and the one-dimensional states localized on dislocations
of certain three-dimensional topological insulators. We show how these novel
states affect thermoelectric properties of the systems and discuss
possibilities to improve the thermoelectric figure of merit using these
materials with perfectly conducting channels.Comment: 10 pages, 6 figures, proceedings for The 19th International
Conference on the Application of High Magnetic Fields in Semiconductor
Physics and Nanotechnology (HMF-19
Lattice thermal conductivity of disordered NiPd and NiPt alloys
Numerical calculations of lattice thermal conductivity are reported for the
binary alloys NiPd and NiPt. The present work is a continuation of an earlier
paper by us [PRB, 72, 214207 (2005)]which had developed a theoretical framework
for the calculation of configuration-averaged lattice thermal conductivity and
thermal diffusivity in disordered alloys. The formulation was based on the
augmented space theorem combined with a scattering diagram technique. In this
paper we shall show dependence of the lattice thermal conductivity on a series
of variables like phonon frequency, temperature and alloy composition. The
temperature dependence of and its realtion to the measured thermal
conductivity is discussed. The concentration dependence of appears to
justify the notion of a minimum thermal conductivity as discussed by Kittel,
Slack and others. We also study the frequency and composition dependence of the
thermal diffusivity averaged over modes. A numerical estimate of this quantity
gives an idea about the location of mobility edge and the fraction of states in
the frequency spectrum which is delocalized.Comment: 23 pages, 18 figure
Cage-size control of guest vibration and thermal conductivity in Sr8Ga16Si30-xGex
We present a systematic study of thermal conductivity, specific heat,
electrical resistivity, thermopower and x-ray diffraction measurements
performed on single-crystalline samples of the pseudoquaternary type-I
clathrate system Sr8Ga16Si30-xGex, in the full range of 0 < x < 30. All the
samples show metallic behavior with n-type majority carriers. However, the
thermal conductivity and specific heat strongly depend on x. Upon increasing x
from 0 to 30, the lattice parameter increases by 3%, from 10.446 to 10.726 A,
and the localized vibrational energies of the Sr guest ions in the
tetrakaidekahedron (dodecahedron) cages decrease from 59 (120) K to 35 (90) K.
Furthermore, the lattice thermal conductivity at low temperatures is largely
suppressed. In fact, a crystalline peak found at 15 K for x = 0 gradually
decreases and disappears for x > 20, evolving into the anomalous glass-like
behavior observed for x = 30. It is found that the increase of the free space
for the Sr guest motion directly correlates with a continuous transition from
on-center harmonic vibration to off-center anharmonic vibration, with
consequent increase in the coupling strength between the guest's low-energy
modes and the cage's acoustic phonon modes.Comment: 7 pages, 7 figures, submitted to PR
Thermoelectric transport in strained Si and Si/Ge heterostructures
The anisotropic thermoelectric transport properties of bulk silicon strained
in [111]-direction were studied by detailed first-principles calculations
focussing on a possible enhancement of the power factor. Electron as well as
hole doping were examined in a broad doping and temperature range. At low
temperature and low doping an enhancement of the power factor was obtained for
compressive and tensile strain in the electron-doped case and for compressive
strain in the hole-doped case. For the thermoelectrically more important high
temperature and high doping regime a slight enhancement of the power factor was
only found under small compressive strain with the power factor overall being
robust against applied strain. To extend our findings the anisotropic
thermoelectric transport of an [111]-oriented Si/Ge superlattice was
investigated. Here, the cross-plane power factor under hole-doping was
drastically suppressed due to quantum-well effects, while under electron-doping
an enhanced power factor was found. With that, we state a figure of merit of
ZT and ZT at T=\unit[300]{K} and T=\unit[900]{K} for the
electron-doped [111]-oriented Si/Ge superlattice. All results are discussed in
terms of band structure features
Collaboration and teamwork: immersion and presence in an online learning environment
In the world of OTIS, an online Internet School for occupational therapists, students from four European countries were encouraged to work collaboratively through problem-based learning by interacting with each other in a virtual semi-immersive environment. This paper describes, often in their own words, the experience of European occupational therapy students working together across national and cultural boundaries. Collaboration and teamwork were facilitated exclusively through an online environment, since the students never met each other physically during the OTIS pilot course. The aim of the paper is to explore the observations that here was little interaction between students from different tutorial groups and virtual teamwork developed in each of the cross-cultural tutorial groups. Synchronous data from the students was captured during tutorial sessions and peer-booked meetings and analysed using the qualitative constructs of ‘immersion’, ‘presence’ and ‘reflection in learning’. The findings indicate that ‘immersion’ was experienced only to a certain extent. However, both ‘presence’ and shared presence were found by the students, within their tutorial groups, to help collaboration and teamwork. Other evidence suggests that communities of interest were established. Further study is proposed to support group work in an online learning environment. It is possible to conclude that collaborative systems can be designed, which encourage students to build trust and teamwork in a cross cultural online learning environment.</p
Glass-Like Heat Conduction in High-Mobility Crystalline Semiconductors
The thermal conductivity of polycrystalline semiconductors with type-I
clathrate hydrate crystal structure is reported. Ge clathrates (doped with Sr
and/or Eu) exhibit lattice thermal conductivities typical of amorphous
materials. Remarkably, this behavior occurs in spite of the well-defined
crystalline structure and relatively high electron mobility (). The dynamics of dopant ions and their interaction with the
polyhedral cages of the structure are a likely source of the strong phonon
scattering.Comment: 4 pages, 3 postscript figures, to be published, Phys. Rev. Let
Resonant States in the Electronic Structure of the High Performance Thermoelectrics AgPb_{2+m}$ ; The Role of Ag-Sb Microstructures
Ab initio electronic structure calculations based on gradient corrected
density functional theory were performed on a class of novel quaternary
compounds AgPb_{2+m}$, which were found to be excellent high
temperature thermoelctrics with large figure of merit ZT ~2.2 at 800K. We find
that resonant states appear near the top of the valence and bottom of the
conduction bands of bulk PbTe when Ag and Sb replace Pb. These states can be
understood in terms of modified Te-Ag(Sb) bonds. Electronic structure near the
gap depends sensitively on the microstructural arrangements of Ag-Sb atoms,
suggesting that large ZT values may originate from the nature of these ordering
arrangements.Comment: Accepted in Physical Review Letter
Glasslike vs. crystalline thermal conductivity in carrier-tuned Ba8Ga16X30 clathrates (X = Ge, Sn)
The present controversy over the origin of glasslike thermal conductivity
observed in certain crystalline materials is addressed by studies on
single-crystal x-ray diffraction, thermal conductivity k(T) and specific heat
Cp(T) of carrier-tuned Ba8Ga16X30 (X = Ge, Sn) clathrates. These crystals show
radically different low-temperature k(T) behaviors depending on whether their
charge carriers are electrons or holes, displaying the usual crystalline peak
in the former case and an anomalous glasslike plateau in the latter. In
contrast, Cp(T) above 4 K and the general structural properties are essentially
insensitive to carrier tuning. We analyze these combined results within the
framework of a Tunneling/Resonant/Rayleigh scatterings model, and conclude that
the evolution from crystalline to glasslike k(T) is accompanied by an increase
both in the effective density of tunnelling states and in the resonant
scattering level, while neither one of these contributions can solely account
for the observed changes in the full temperature range. This suggests that the
most relevant factor which determines crystalline or glasslike behavior is the
coupling strength between the guest vibrational modes and the frameworks with
different charge carriers.Comment: 8 pages, 4 figures, 4 tables, submitted to Phys. Rev.
First Order Bipolaronic Transition at Finite Temperature in the Holstein Model
We investigate the Holstein model by using the dynamical mean-field theory
combined with the exact diagonalization method. Below a critical temperature
Tcr, a coexistence of the polaronic and the bipolaronic solutions is found for
the same value of the electron-phonon coupling $ in the range gc1(T)<g<gc2(T).
In the coexistence region, the system shows a first order phase transition from
the bipolaronic to the polaronic states as T decreases at T=Tp(<Tcr), where the
double occupancy and the lattice fluctuation together with the anharmonicity of
the effective ion potential change discontinuously without any symmetry
breaking. The obtained bipolaronic transition seems to be consistent with the
rattling transition in the beta-pyrochlore oxide KOs2O6.Comment: 5 pages, 5 figures, J. Phys. Soc. Jpn. 79 (2010) 09370
Electronic, vibrational and transport properties of pnictogen substituted ternary skutterudites
First principles calculations are used to investigate electronic band
structure and vibrational spectra of pnictogen substituted ternary
skutterudites. We compare the results with the prototypical binary composition
CoSb to identify the effects of substitutions on the Sb site, and evaluate
the potential of ternary skutterudites for thermoelectric applications.
Electronic transport coefficients are computed within the Boltzmann transport
formalism assuming a constant relaxation time, using a new methodology based on
maximally localized Wannier function interpolation. Our results point to a
large sensitivity of the electronic transport coefficients to carrier
concentration and to scattering mechanisms associated with the enhanced
polarity. The ionic character of the bonds is used to explain the detrimental
effect on the thermoelectric properties
- …
