244 research outputs found

    Regression of murine lung tumors by the let-7 microRNA.

    Get PDF
    MicroRNAs (miRNAs) have recently emerged as an important new class of cellular regulators that control various cellular processes and are implicated in human diseases, including cancer. Here, we show that loss of let-7 function enhances lung tumor formation in vivo, strongly supporting the hypothesis that let-7 is a tumor suppressor. Moreover, we report that exogenous delivery of let-7 to established tumors in mouse models of non-small-cell lung cancer (NSCLC) significantly reduces the tumor burden. These results demonstrate the therapeutic potential of let-7 in NSCLC and point to miRNA replacement therapy as a promising approach in cancer treatment

    A Variant in a MicroRNA complementary site in the 3' UTR of the KIT oncogene increases risk of acral melanoma.

    Get PDF
    MicroRNAs (miRNAs) are small ∼22nt single stranded RNAs that negatively regulate protein expression by binding to partially complementary sequences in the 3' untranslated region (3' UTRs) of target gene messenger RNAs (mRNA). Recently, mutations have been identified in both miRNAs and target genes that disrupt regulatory relationships, contribute to oncogenesis and serve as biomarkers for cancer risk. KIT, an established oncogene with a multifaceted role in melanogenesis and melanoma pathogenesis, has recently been shown to be upregulated in some melanomas, and is also a target of the miRNA miR-221. Here, we describe a genetic variant in the 3' UTR of the KIT oncogene that correlates with a greater than fourfold increased risk of acral melanoma. This KIT variant results in a mismatch in the seed region of a miR-221 complementary site and reporter data suggests that this mismatch can result in increased expression of the KIT oncogene. Consistent with the hypothesis that this is a functional variant, KIT mRNA and protein levels are both increased in the majority of samples harboring the KIT variant. This work identifies a novel genetic marker for increased heritable risk of melanoma

    PuTmiR: A database for extracting neighboring transcription factors of human microRNAs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some of the recent investigations in systems biology have revealed the existence of a complex regulatory network between genes, microRNAs (miRNAs) and transcription factors (TFs). In this paper, we focus on TF to miRNA regulation and provide a novel interface for extracting the list of putative TFs for human miRNAs. A putative TF of an miRNA is considered here as those binding within the close genomic locality of that miRNA with respect to its starting or ending base pair on the chromosome. Recent studies suggest that these putative TFs are possible regulators of those miRNAs.</p> <p>Description</p> <p>The interface is built around two datasets that consist of the exhaustive lists of putative TFs binding respectively in the 10 kb upstream region (USR) and downstream region (DSR) of human miRNAs. A web server, named as PuTmiR, is designed. It provides an option for extracting the putative TFs for human miRNAs, as per the requirement of a user, based on genomic locality, i.e., any upstream or downstream region of interest less than 10 kb. The degree distributions of the number of putative TFs and miRNAs against each other for the 10 kb USR and DSR are analyzed from the data and they explore some interesting results. We also report about the finding of a significant regulatory activity of the YY1 protein over a set of oncomiRNAs related to the colon cancer.</p> <p>Conclusion</p> <p>The interface provided by the PuTmiR web server provides an important resource for analyzing the direct and indirect regulation of human miRNAs. While it is already an established fact that miRNAs are regulated by TFs binding to their USR, this database might possibly help to study whether an miRNA can also be regulated by the TFs binding to their DSR.</p

    A retrospective population-based study of childhood hospital admissions with record linkage to a birth defects registry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Using population-based linked records of births, deaths, birth defects and hospital admissions for children born 1980–1999 enables profiles of hospital morbidity to be created for each child.</p> <p>Methods</p> <p>This is an analysis of a state-based registry of birth defects linked to population-based hospital admission data. Transfers and readmissions within one day could be taken into account and treated as one episode of care for the purposes of analyses (N = 485,446 children; 742,845 non-birth admissions).</p> <p>Results</p> <p>Children born in Western Australia from 1980–1999 with a major birth defect comprised 4.6% of live births but 12.0% of non-birth hospital admissions from 1980–2000. On average, the children with a major birth defect remained in hospital longer than the children in the comparison group for the same diagnosis. The mean and median lengths of stay (LOS) for admissions before the age of 5 years have decreased for all children since 1980. However, the mean number of admissions per child admitted has remained constant at around 3.8 admissions for children with a major birth defect and 2.2 admissions for all other children.</p> <p>Conclusion</p> <p>To gain a true picture of the burden of hospital-based morbidity in childhood, admission records need to be linked for each child. We have been able to do this at a population level using birth defect cases ascertained by a birth defects registry. Our results showed a greater mean LOS and mean number of admissions per child admitted than previous studies. The results suggest there may be an opportunity for the children with a major birth defect to be monitored and seen earlier in the primary care setting for common childhood illnesses to avoid hospitalisation or reduce the LOS.</p

    An increased fraction of circulating miR-363 and miR-16 is particle bound in patients with chronic lymphocytic leukaemia as compared to normal subjects.

    Get PDF
    In vitro culture studies have shown that miR-363 is enriched in extracellular vesicles from chronic lymphocytic leukaemia cells. We wondered whether miR-363 was detectable in plasma, which is an essential precondition for further studies to assess its usefulness as a biomarker. Using samples from two clinical trials: one enrolling patients with advanced disease and the other asymptomatic patients with early stage disease, we determined plasma miR-363 levels and secondly investigated the distribution of this miRNA between plasma and particle bound fractions in patients and normal subjects.Advanced disease (n = 95) was associated with higher levels of miR-363 than early stage disease (n = 45) or normal subjects (n = 11) but there was no association with markers of prognosis. The distribution of specific miRNA between particle bound and plasma protein fractions was investigated using size exclusion chromatography on plasma from patients (n = 4) and normal subjects (n = 3). ~ 20% of total miR-16 and miR-363 is particle bound in patients while there was no detectable particle bound material in normal subjects. Our work demonstrates that miR-363 levels are raised in chronic lymphocytic leukaemia patients and raises the possibility that distribution of circulating miRNA between plasma fractions differs in health and disease

    Synthesis and Thermoelectric Properties of Bi2Se3 Nanostructures

    Get PDF
    Bismuth selenide (Bi2Se3) nanostructures were synthesized via solvothermal method. The crystallinity of the as-synthesized sample has been analyzed by X-ray diffraction, which shows the formation of rhombohedral Bi2Se3. Electron microscopy examination indicates that the Bi2Se3 nanoparticles have hexagonal flake-like shape. The effect of the synthesis temperature on the morphology of the Bi2Se3 nanostructures has also been investigated. It is found that the particle size increases with the synthesis temperature. Thermoelectric properties of the Bi2Se3 nanostructures were also measured, and the maximum value of dimensionless figure of merit (ZT) of 0.096 was obtained at 523 K

    Insect-Specific microRNA Involved in the Development of the Silkworm Bombyx mori

    Get PDF
    MicroRNAs (miRNAs) are endogenous non-coding genes that participate in post-transcription regulation by either degrading mRNA or blocking its translation. It is considered to be very important in regulating insect development and metamorphosis. We conducted a large-scale screening for miRNA genes in the silkworm Bombyx mori using sequence-by-synthesis (SBS) deep sequencing of mixed RNAs from egg, larval, pupal, and adult stages. Of 2,227,930 SBS tags, 1,144,485 ranged from 17 to 25 nt, corresponding to 256,604 unique tags. Among these non-redundant tags, 95,184 were matched to the silkworm genome. We identified 3,750 miRNA candidate genes using a computational pipeline combining RNAfold and TripletSVM algorithms. We confirmed 354 miRNA genes using miRNA microarrays and then performed expression profile analysis on these miRNAs for all developmental stages. While 106 miRNAs were expressed in all stages, 248 miRNAs were egg- and pupa-specific, suggesting that insect miRNAs play a significant role in embryogenesis and metamorphosis. We selected eight miRNAs for quantitative RT-PCR analysis; six of these were consistent with our microarray results. In addition, we searched for orthologous miRNA genes in mammals, a nematode, and other insects and found that most silkworm miRNAs are conserved in insects, whereas only a small number of silkworm miRNAs has orthologs in mammals and the nematode. These results suggest that there are many miRNAs unique to insects

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin.</p> <p>Results</p> <p>After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming a functional complex, laforin and perhaps malin may also have independent functions. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32, which belongs to the tripartite-motif containing family of proteins. We present experimental evidence that both malin and TRIM32 share some substrates for ubiquitination, although they produce ubiquitin chains with different topologies. However, TRIM32-specific substrates were not reciprocally ubiquitinated by the laforin-malin complex.</p> <p>Conclusions</p> <p>We found that malin and laforin are not conserved in the same genomes. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32. The latter result suggests a common origin for malin and TRIM32 and provides insights into possible functional relationships between both proteins.</p
    corecore